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Chapter 1

Introduction

Lack of information cannot be remedied

by any mathematical trickery. Lánczos[10]

The computer program Eden (short for Electron density) is based on a real-space method for crystallography.

The origin of the method came from the analogy between holography and the problem of recovering the

electron density of molecular constituents of a crystal. It reins in the techniques of image processing to aid

in the search for a crystal structure.

The most unconventional feature of the holographic method is that it is a real-space method: it searches for

a distribution of electrons in the unit cell that meets all the known constraints on the molecules themselves,

while giving rise to the observed diffraction pattern. The phases are thus free to change (within certain

limitations). This manual gives short shrift to the theory of the holographic method. However, it is important

that as a potential user of the program, you become familiar with that theory. For an overview of the theory,

see [12]. More detailed information is in [13] and [11]. Recent papers, [14] and [15], give further details.

We urge you to read [12] before you attempt to run Eden.

It may be helpful to explain from the outset what Eden does not do. It does not deal in atoms at all: except

for one recently-added module, it neither reads nor writes pdb files (except in very trivial circumstances),

it has no knowledge of chemical bonds or valencies, let alone amino acids or helices. However, that is not

to say that it cannot determine the positions of atoms! It may provide a well-circumscribed volume within

the unit cell which can easily be identified as a sulphur atom, for example, when viewed under O, but the

word “sulphur” will not appear in the Eden output. Essentially, the only piece of chemical information that

the program has and uses very effectively is that electrons cannot have negative density! The connections of

Eden to the world of conventional crystallography are via the structure factors – fobs measurements that are

read and fcalc models that are read and written – and map files for visualization that are written.

Eden is capable of solving crystals containing macromolecules (proteins, RNA or DNA) of current interest to

biologists and biochemists Recently, physicists have shown an interest in using Eden for very high-resolution
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CHAPTER 1. INTRODUCTION 2

work with inorganic crystals as well. Eden’s main advantages are that it has less bias toward its input

model than usual methods and is capable of incorporating additional information in a consistent and optimal

way. The program runs in a time of order NlogN and it needs storage of order N , where N is the total

number of resolution elements, which is about the number of reflections collected. Eden is essentially scale-

independent: it is equally capable of finding single atoms in a cubic crystal measuring 5 Ångstrom to a side,

as it is in identifying a protein subunit in a 500 Ångstrom crystal of the Ribosome – always, given adequate

resolution and accuracy of the measurements.

Eden is written in standard C. It has run successfully on a variety of workstations in the Unix environment:

SUN Sparc stations, Silicon Graphics Iris and Indy Irix, IBM RISC System/6000 Model 550, HP9000 and

DEC alpha, and also under Linux on a MacOS X.

Eden consists of the actual solver program (Solve) plus an extended number of utility programs, all of

which are included under a single main controller. A general description of the solver, using Crambin as an

example, is described in Chapter 2. Chapter 3 deals with files: input, intermediate and output. Chapter 4

returns to the solver, with a more detailed description appropriate for realistic runs. Chapter 5 revisits

the solver for a discussion of runs with multiple isomorphous replacement (MIR) and multiple anomalous

dispersion (MAD). The same program, Solve, is used in these cases. Chapter 6 discusses the available

physical-space constraints that may be applied in Solve. Chapter 7 discusses the available reciprocal-space

constraints that may be applied in Solve. Chapter 8 turns to the preprocessors: Apodfc, Apodfo, Back,

Expandfc, Expandfo, Maketar, Perturbhkl and Sym. Some of these will have to be run before you can

solve any real problem. Chapter 9 describes postprocessor, Regrid. Chapter 10 reviews evaluation utilities:

Dphase, Distance, Count, Shapes and Variance. Chapter 11 includes some details for fine-tuning runs,

invoking other utilities, running the latest addition to Eden’s modules – Refine and experimenting with

the source code. Appendix A gives instructions for installing Eden; and Appendix B describes scripts for

handling multiple jobs.

Version 5.2 differs from earlier versions in that it is controlled within GROMACS. Also, it is able to work

in two modes: using floating-point arithmetic throughout or using double-precision arithmetic throughout.

While the double version is undoubtedly more precise, size and even time considerations make the possibility

of using floating-point arithmetic quite attractive. The choice is determined by a single flag in the Makefile.

Version 5.2 contains a new module, Refine, that will allow you to fine-tune your .pdb file on the basis of a

reliable Eden map. Please note:

Even if you are familiar with Eden, please check out Appendix A for

instructions on re-installing the FFTW package and fine-tuning the Makefile.

Other changes include parsing of pdb files without using a special AWK script; and handling of .fobs files

that include phase information. Both fobs and fcalc files are now written out in a format that enables them
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to be read by other standard crystallographic programs. You no longer need to explicitly set a shell variable

named $EDENHOME (the full directory path that ends with EDEN or eden); this is done automatically

during the ’make’ procedure. The versions in the 5 series also differ from earlier ones in the following ways:

A more up-to-date version of FFTW is used. The current version saves the fft “wisdom”, enabling reusage

in runs within the same directory. This has two advantages: (a) multiple runs under identical conditions give

bit-for-bit agreement, which is not always the case when there is no such available wisdom file; (b) the time

spent by EDEN setting up the fft parameters for a repeat run is essentially instantaneous, in place of a time

of order 1 minute. However, we are still using version V2 of the FFTW package.

The electron density histogram information in Solve and Back is now given a sub-decade breakdown when-

ever one decade contains > 50% of the data. In Solve there is a high-resolution input option for accurately

recovering sharp peaks in the electron density. In Solve, the fcalc is generated internally and automatically

from its physical-space counterpart. Generally, Expandfo and Expandfc need not be used, since expansion

to P1 is handled internally by programs reading fobs and fcalc files. There are modules for phase extension,

singlet and triplet invariants and for amplitude and intensity detwinning (see Chapters 6 and 7).

Code for scaling the fobs to fcalc files has been incorporated into the apodization procedure. The scaling

factor for fobs to fcalc, identified by keyword FSCALE, is now a mandatory input parameter to Solve.

Non-crystallographic symmetry has been withdrawn as a constraint. Regarding the modes of operation of

Solve (completion or correction), correction is now the default mode. Correction mode is generally not

recommended. There are several name changes among the input parameters and a few changes in the default

values of parameters. For example, by default, sigma values in the fobs file are now used. There are new

tools for comparing the results of runs that should be similar (e.g., Solve runs of variously perturbed starting

models). For all these reasons, even if you are already familiar with Eden, you should nevertheless check

out this manual or the help files before resubmitting old input or using Eden for new problems.



Chapter 2

General Operation of Eden

2.1 How to Get Started in Eden

When you have properly installed Eden on your system (as described in Appendix A), you can run a test

problem in the example/ directory. It contains a README and four directories —

originals/ solve/ apodize/ back/

The file README contains fairly detailed information on what’s here and how to use it. In particular,

originals/ contains zipped files that have observed data, a “partial” fcalc, and the original .pdb file (that you

will not, in fact, need for exercising Eden). The directories apodize/, back/, and solve/ (to be used in that

order) contain what is needed to apodize and scale the starting files; prepare a real-space file corresponding

to the partial model; and run Solve to find the missing electron density.

In each Eden run, you will type the word “eden” followed by the name of the Eden module that you wish to

run (e.g., “back”) followed by the name of an input file (e.g., “par”, standing for the file “par.inp”). Usually,

there are no further words that are required to run eden (although there may be optional flags, such as “-g”

for “enable graphics”). All of this will be described more fully in this manual. Each Eden module writes

out a log of the run in question, whose name is the module name with extension “log”. For example, file

solve.log is a log of the Solve run. All messages that were sent to your terminal will go to the log file

as well. The log also contains a recapitulation of the run mode and parameters, information about the input

files, details regarding the R factor, the range of electrons/voxel in the output file, and the time spent for the

run. Other output files depend on the module being run. All of them will be discussed below.

2.2 Basic Parameters in the Input

If you examine the file floor.inp (see Table 2.1), you will see both familiar and not-so-familiar input

parameters. A brief summary of the contents of that file follows. More exhaustive information, including

parameters that have taken default values for this particular problem, will be given in Section 3.3.

4



CHAPTER 2. GENERAL OPERATION OF EDEN 5

Table 2.1: Contents of floor.inp

# The pound sign (#) indicates comments that are ignored by Eden.

CELL 40.802 18.519 22.379 90. 90.57 90.
SYMMETRY P21
INPUT RES 0.93
FSCALE 0.8 # as determined in apodfo
FO FILENAME ../apodize/cramb.fobs
MD FILENAME ../back/par back
MODE correction

• CELL. This is the usual set of unit cell dimensions — a, b and c, in Ångstroms, followed by the angles

α, β and γ in degrees.

• SYMMETRY. This is the usual name of the space group, written without subscripts (e,g, P212121).

• INPUT RES. This is the data resolution in Ångstroms. You may also use the name RESOLUTION .

• FO FILENAME. The name of the fobs file.

• MD FILENAME. The name of a real-space model in intermediate file format (omitting extension.bin)

that is the starting model. Preparation of such a starting model is the job of Eden’s preprocessor, Back.

•MODE. This may be “completion” or “correction”, but “correction” is actually the default.

2.3 Help

Online help is available for each of the Eden programs. By typing

eden

you will get some general information. By typing

eden program

you will get general information about the named program (e.g. Solve or Back). If you invoke an Eden

program incorrectly (with the wrong number of arguments), you get the same information.

If you invoke an Eden program with missing arguments – e.g.

eden apodfo param file name

you will be prompted to type the missing information.

If you invoke help explicitly by typing

eden -h program

you will be provided with guidance on the preparation of the input for program. An alphabetical list of all

Eden’s keywords (all the items appearing in input files), with brief explanations, may be reviewed by typing

eden -h keywords
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2.4 Terminology

In order to keep matters as clear as possible, we try to reserve the word “model” for protein1 or data derived

from a pdb file or from a standard crystallographic program — i.e., data based on chemical information.

Thus we may have model input structure factor files, as well as real-space models, derived from them by

applying Eden’s preprocessor utility, Back. On the other hand, files generated by Solve will be referred to

as structure-factor solutions (in Fourier space) and real-space solutions, which may be converted to electron

density maps by running them through Eden’s post-processor, Regrid. When the origin of a structure factor

file may be either an externally-derived model — from MLPHARE, for example — or the output of some

Eden program, we will refer to it simply as an fcalc file. Similarly, when a real-space data file may be either

derived from a model or generated by Solve, we will refer to it as an electron/voxel file. Note that the output

of the postprocessor, Regrid is not an electron/voxel file, but rather a sampled electron density file in units

of electrons/Å3.

2.5 Notation

In this manual, the messages coming to your terminal and your input to the terminal are shown in typewriter

font for verbatim input or in italics for symbolic input. Optional parameters are listed inside square brackets

[ ]. Keywords are written in upper-case, although you may use either case in your .inp files. When the

value of a keyword such as FSCALE is referred to in the text symbolically, it is called fscale.

In the text of this manual, names of all crystallographic software packages, including Eden itself, and the

names of the Eden programs, are capitalized for clarity; when entering a command on your terminal, you

may either use lower-case, e.g.

eden solve floor

or capitalize the Eden program name, as in

eden Solve floor

If you prefer to invoke Eden itself using upper-case E —

Eden Solve floor

you will have to establish Eden as an alias for eden, or make the appropriate change in the Makefile (see

Appendix A).

2.6 Display Programs

Certain parts of Eden need built-in display capabilities: we currently use xmgrace2, for showing simple

x− y plots. The applications for which such a display program is needed are discussed in Section 8.1.

1In this manual, I frequently refer to all macromolecules as “proteins” even though RNA and DNA structures – and even inorganic
crystals! – are treated on an equal footing.

2Copyright 1991 - 1995 Paul J. Turner



Chapter 3

Files

3.1 General Observations

There are 5 main classes of files associated with Eden:

• Standard crystallographic files.

• Eden input parameter files.

• Intermediate binary electron/voxel files.

• Log files.

• Cost files.

Each of these categories is discussed below. Please note that an Eden input parameter file always has the

standard extension .inp; that extension need not be used when identifying such a file as an input argument.

Similarly, intermediate bin files always have the same standard extension .bin; that extension need not be

written when, for example, such a file is used as a solvent target or an electron/voxel starting point. Log files

and cost files have standard extensions too (.log and .cost). On the other hand, structure factor files do not

have standard extensions; for this reason, their names are always written out in full.

3.2 Standard Crystallographic Files

Briefly, standard crystallographic files are referred to in this manual by their usual extension: fobs, fcalc and

pdb. Files with extension .fobs (or .fo or .obs), .fcalc (or .fc or .calc) and .pdb are used for

input. For output, X-PLOR/CNS .map files are written by Eden’s postprocessor, Regrid. A simple awk

script, awk xplor to xtal, to be found in Appendix B, can convert structure factor files to .phs files for use

by XtalView. PyMOL uses X-PLOR/CNS .map files, but their extension must be changed from .map to

.xplor.

Pdb files are not generally used directly in Eden. However, they may be invoked by the utilities Count,

Refine, Regrid and Shapes, and also by Sym and Tohu. They are used for preparing the structure factors

corresponding to heavy atom positions in MIR and MAD runs (see Section 5.2.3). Also, Eden’s utility Tohu

7



CHAPTER 3. FILES 8

can be used to prepare fcalc files from pdb data, but generally other crystallographic packages (such as

CCP4/SFALL) that are more sophisticated (and faster) than Tohu are preferable. See also Chapter 11 for

special uses of pdb files by Eden’s preprocessors and postprocessors.

Apodfc, Back, Expandfc and Dphase all read standard X-PLOR/CNS fcalc files. Solve, Apodfo and Ex-

pandfo all read standard X-PLOR/CNS fobs files. Solve and Back use data covering the full half-ellipsoid

for which h ≥ 0 in (hkl) space; if the data are not expanded to P1 but are in the upper half-ellipsoid, these

programs will quietly expand the data. Also, if the input fcalc file to Back is not in the upper half-ellipsoid,

Back will quietly transfer it to the desired region. Similarly, if the input fobs file to Solve is not in the upper

half-ellipsoid, Solve will transform it internally. Although Eden programs require input of only a unique set

of reflections, they read them all, expand them to the full half-ellipsoid for which h ≥ 0 in (hkl) space. and

verify that the expansions are consistent. Note that whenever fobs files are read, forbidden reflections are

explicitly set to zero and are included in the fobs set. If certain reflections appear that are forbidden for the

space group in question, Eden reports them. Since some standard programs that calculate Fcalc and Fobs

are not very accurate, Solve may also complain about (and corret for) lack of Friedel symmetry.

Eden expects all files related to structure factors (including those with heavy atom information for MIR and

MAD) to be formatted essentially like standard X-PLOR/CNS fcalc files. In other words, there should be

a symbol such as INDX or INDE (containing at least IND) followed by values for h, k, and l, followed by

another identifier and then an amplitude and (for fcalc files) a phase. For fobs files, the diffraction value

should be followed by 2 further fields containing a symbol such as SIGMA (containing at least SIG) and a

value for σ. Other columns are ignored1. No special Fortran format is required; fields are expected to be

delimited by white space (spaces, not tabs). Regarding fobs files, Eden will by default use σ values. Use

keyword USESIG with value FALSE if you do not want to use σ’s. See Table 3.2. Note that if Eden finds

no σ’s in the input fobs files, it will quietly turn off the USESIG setting and report this in the log. Fobs

information is expected to be amplitudes and their sigmas, not intensities and their sigmas.

Both fcalc and fobs files should have an entry corresponding to h = 0, k = 0 and l = 0. When preparing

fcalc files, you should do the calculations out to infinitely low resolution (“infinity” in X-PLOR/CNS), in

order to get the (000) reflection. As for the fobs file, you should set the (000) term to contain Nel, the

estimated total number of electrons in the protein for the full unit cell, plus all solvent electrons, ordered and

disordered. Unless you have a better estimate, use
√

0.1 ∗Nel for its SIGMA value. The actual value of the

fobs at (000) is not extremely critical; typically, we find that users may err by 10− 20% even, but your best

ballpark number should be entered. While all structure factors in a model file are potentially useful, only

those corresponding to (hkl)’s for which there is a measured fobs amplitude are actually used. Note that

good very low (hkl)measurements are especially helpful for successful optimization in Solve. For the same

reason, if your very low (hkl) measurements are suspect (e.g., “saturated”), you may want to exclude them
1A typical awk script for converting ḣkl files to X-PLOR/CNS format is to be found in Appendix B.
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from the file entirely. Eden deals well with missing data, but incorrect data is worse than no data at all. [10]

Several Eden programs write calculated structure factor files. The main ones are listed here: Forth writes a

file name forth.hklwhere name stands for the input electron/voxel file; Apodfc writes a file name apo.ext

where name.ext is the input structure factor file name; and Expandfc writes a file name P1.ext. (For anoma-

lous dispersion, it writes name P1plus.ext and possibly name P1minus.ext, where name.ext is the input

file.) Note that Solve no longer writes a file name.newhkl where name stands for the input parameter file

and B no longer writes a file name back.newhkl where name stands for the input parameter file. if you

want to know what these fcalc files look like, you should run Forth on the real-space output of Solve or Back.

Two programs write revised versions of their input fobs files: Apodfo writes a file name apo.ext where

name.ext is the input fobs file name; and Expandfo writes a file name P1.ext (For anomalous dispersion, it

writes name P1plus.ext and possibly name P1minus.ext, where name.ext is the input fobs file.)

If you use O or Mapman for examining electron densities, you should run the postprocessor Regrid whose

final output is a .map file — an electron density file in the X-PLOR/CNS format. If you display electron

densities with XtalView, you should follow an Eden Solve by running Forth, to prepare an fcalc file corre-

sponding to the binary output of Solve, and then running an awk script, awk xplor to xtal to be found

in Appendix B. You may then skip the Regrid postprocessing entirely.

3.3 Eden Input Parameter Files

The operation of each of the Eden programs is governed primarily by the parameters in its input file,

name.inp. This file consists of a list of keywords followed by values, with no = sign required between

them. You may include blank lines anywhere. You may append comments after keyword-value pairs; such

comments are stripped from the input before it is used. The pound sign (#) signals the start of a comment.2

Keywords may be written in either lower or upper case. (In this manual, keywords are always written in

upper case for greater visibility.) They may be ordered arbitrarily. It is assumed that no line of input contains

more than 200 characters (including embedded blanks). Numbers are in free format, symbols are space-

or tab-delimited, with no intervening commas. Keywords that are not required for a particular program are

ignored. This is convenient, in that an input parameter file written for Solve may also be used for Dphase or

Maketar, for example, and the superfluous input lines will not interfere with the program. However, this also

means that if you misspell a keyword, the program will use the default value (insofar as there is a default).

For this reason, we recommend that you check the log of Solve or Back carefully, to verify that Eden has

used the values you intended. (Both Solve and Back produce log files in which the input that was ignored

is listed for reference. All other Eden programs also produce log files, but the ignored information is not

highlighted in them.) All Eden programs stop and complain if compulsory keywords are missing or misspelt.
2If you prefer some other special character, you may change the pound sign: in the header file, util.h, look for COM-

MENT CHAR, change it and then recompile/reload the whole program.
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Table 3.1 lists keywords and values required for all Eden programs. Apart from Solve and Back, most Eden

programs have no other required input. Each keyword is followed by a typical value as it would be in a real

input file. Descriptive and default information are written on the right-hand side of the page, with a leading

# sign to indicate that they are comments. Of course, comments need not be written in your input parameter

file. We now discuss the keywords from Table 3.1.

Table 3.1: Basic Input for All Eden Programs

Keyword Example of value description default

SYMMETRY P3221 # space group name none
CELL 57.2 33.9 68.7 90 90 120# unit cell dimensions in Å none

# and angles in degrees none
RESOLUTION 2.0 # resolution in Å none
RECORD ../myrecord # name of run history file history

• SYMMETRY. The value associated with this keyword is the space group name. Eden recognizes all 230

space groups. Rules for space group names are the same as in CCP4 [2] – indeed, the CCP4 file symop.lib

is used for matching the name and for identifying symmetry operators for the space group. Names are the

“short” form given in [8]; subscripts are typed as is and the overbar is typed as a leading −, so that e.g.

P212121 is typed as P212121 and P 1̄ would be typed as P-1. You should use the conventional choices

that correspond to the space groups with the first 230 numbers in symop.lib. Alternative choices such as

P1121 and A2 are not accepted by Eden. Where there is a choice, you have to use the conventional unique

axis (b for monoclinic crystal systems and c for trigonals and hexagonals). For trigonal crystal systems, you

have to use hexagonal rather than rhombohedral axes. Eden does not accept space group numbers. For space

groups with alternate origins, please check symop.lib included in the source/ subdirectory of EDEN/.

• CELL. This is the usual set of unit cell dimensions — a, b and c, in Ångstroms, followed by the angles

α, β and γ in degrees. Currently, the only global restrictions on angles is that all are either ≥ 90◦ or ≤ 90◦.

If the angles that are given for your crystal do not satify these rules, possibly CCP4’s AXISSEARCH [2]

program can help you. Eden checks that the input cell dimensions and angles are consistent with restrictions

imposed by the space group. Eden sets the grid type (simple or body-centered) depending on the angles;

if they are within 15◦ of 90◦, a body-centered grid type is used by default You may override the grid type

setting by entering an explicit value for GRID TYPE.

• RESOLUTION. This is the data resolution in Ångstroms. You may also use the name INPUT RES , which

was Eden’s earlier name for this quantity.. It corresponds closely to the maximum resolution of the fobs file.

Eden will use a grid whose spacing along the three dimensions is approximately 0.6 ∗ resolution for a

simple grid type or 0.7 ∗ resolution for a body-centered grid type. The actual number of divisions along
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each axis is always a “nice” integer that satisfies the symmetry of the space group. The gridding resolution

also determines which structure factors are to be used in the Eden run in question. Determining a value for

resolution is discussed in Section 4.1.2.

• RECORD. Each Eden run is summarized in four lines that are written into a file of your choice or, by

default, into a file named history in the pwd; the summary includes: the date and time at which it started;

the directory from which it was run; the command line; and the outcome (success or failure). As successive

Eden runs are done, new records are appended to the end of the history file. The use of the history file is

intended to help you keep track of multiple Eden runs (when they were done, and from where, in which

order, etc.)

Table 3.2 lists the full set of keywords and values for Solve runs without Multiple Isomorphous Replacement

(MIR), or multiple anomalous dispersion (MAD). Added keywords and values needed by Solve with MIR

and MAD are discussed in Chapters 5 and 6. Optional keywords and their possible values for the utilities

are discussed in Chapters 8 and 9.

We now discuss the “other basic input” from Table 3.2.

• FO FILENAME. The name of the fobs file. The relative or absolute directory path name should be used if

the fobs file is not in the directory from which you run Eden. Generally, this file will not be the same file as

your original set; see Chapter 4.

• FSCALE. This is the factor for scaling fobs data on an absolute scale. See Section 4.1.3.

•MD FILENAME. The name of a real-space model in intermediate file format (omitting extensions .bin)

Such a real-space model is generated by running the preprocessor, Back on the model fcalc file. This, too, is

discussed in Chapter 4.

• NCONSTRAINTS. Count of physical-space (or reciprocal-space) constraints in the problem. A number

in range (0, 12) is permitted, the default being 0. In the following, [c] stands for a number in range 1, ...

NCONSTRAINTS.

• CON TYPE[c]. A descriptive word for the type of the c-th constraint. Legal values are: “target” for a

generic target or “solvent tar” for a solvent target or “stabilize tar” for a protein target (there may be more

than one), “phase ext” for phase extension, “singlet” for (h, k, l) singlet invariants, “triplet” for (h, k, l)

triplet invariants, or “cs” for crystal symmetry. All of these will be discussed in Chapters 6 and 7.

• RELWT CON[c]. The relative weight to be used in the cost function for the c-th constraint.

• TA FILENAME[c]. The name of a real-space model file in intermediate format (omitting extension .bin)

that corresponds to the c-th target constraint. Such a real-space target may come from a variety of files

(Section 4.1.5 and Chapter 6).

• WT FILENAME[c]. The name of a real-space model file in intermediate format (omitting extension

.bin) that corresponds to the weights associated with the c-th target. Such a real-space set of weights is

generated by running Maketar (Section 4.1.5, Chapter 6 and Section 8.4).
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Table 3.2: Complete Sample Input for Solve

Keyword Example of value description default

basic input for all Eden programs (see Table 3.1)

SYMMETRY P3221 # space group name none
CELL 57.2 33.9 68.7 90 90 120 # unit cell dimensions in Å

# and angles in degrees none
RESOLUTION 2.0 # resolution in Å none
FO FILENAME ../data/dat P1 apo.fobs # name of fobs file none
FSCALE 0.8 # scaliing actor for fobs none
MD FILENAME mod back # real-space model derived

# from an fcalc model. none

other basic input for Solve

NCONSTRAINTS 1 # no. of cost func. constraints 0
CON TYPE1 target # description of first constraint none
RELWT CON1 0.1 # rel. wt. for 1st constraint 0
TA FILENAME1 mytarget # name of 1st Np space target none
WT FILENAME1 myweight # name of 1st Np space weight none

uncommonly used input for Solve

HIGHRES TRUE # enable high-res processing FALSE
HRCUTOFF 15. # highres cutoff 10.
DFDX CRIT 0.1 # gradient drop per iteration 0.03
GRID TYPE simple # “simple” or “body-centered” see CELL
MIN DENS 20.0 # Max. density (el/cub Å) 1000.
MAX DENS -0.5 # Min. density (el/cub Å) 0.
R STOP 0.03 # R factor to terminate run 0
MODE completion # how to treat initial model correction
DISCRP FRAC 0.5 # fine-tuning stopping criterion 1.
TITLE Data from 2/4/96 # anything blank
USESIG FALSE # switch to use fobs SIGMAs TRUE
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Note that files identified by name in the input need not be in the same directory from which you run Eden; if

they are not in that directory, you must give the path to them. Paths may be relative or absolute.

We now consider “uncommonly used input” from Table 3.2. More information is given in Chapter 11.

• HIGHRES. The solver will extract points that are particularly strong and handle them at a two-fold higher

resolution. Such points will not be written out as part of the usual gridded .bin file, but will instead be

written as an ASCII list .list. The high-resolution points will be merged into the full array of electron

densities by including this keyword in the Regrid input.

• HRCUTOFF. When HIGHRES is in effect, this keyword defines the fractional level at which high- reso-

lution processing will be enabled, relative to the average voxel in the unit cell. Thus, for example, using the

default HRCUTOFF, if the average value of a voxel in the unit cell is 0.16, the high resolution points are

those whose value is greater than 1.6. Since this is a “moving target”, the number of such high resolution

points and their locations are recalculated at each outer iteration.

• DFDX CRIT. The factor governing the extent to which the inner loop of the solver will persist in trying to

reduce the gradient of the function being optimized, before it gives up and returns to the outer loop. See also

Chapter 11.

• GRID TYPE. If any of the angles α, β or γ is greater than 105◦, (as in the example in Table 3.2) or less

than 75◦. Eden uses a simple grid type. In this grid, electrons are represented as Gaussian blobs that are

placed at regularly spaced positions starting at the (0, 0, 0) corner of the unit cell and dividing the a, b and c

axes of the unit cell into an integer number of subdivisions da, db, and dc. If all three angles are close to 90◦,

Eden can place its Gaussians on a body-centered grid type, consisting of the above-mentioned simple grid

plus an intercalating grid. The intercalating grid places electrons at positions starting at (da/2, db/2, dc/2)

and extending up by da, db, and dc along a, b and c. In this manner, the maximum distance between

neighboring points is decreased by a factor of about
√

3/2 = 0.866 at a cost of double the storage. For

appropriate symmetry groups such as P212121, this body-centered grid type is generally used. Since Eden

will automatically choose the appropriate grid type, there seems to be little advantage in setting it explicitly.

All further references to input files will disregard the explicit use of the keyword, but you should be aware

that you can write it into any Eden input file.

•MIN DENS. A lower cut-off for the density (in electron/cubic Ångstrom) used by the complex conjugate

solver. Under rare circumstances, there may be a need to set this to something other than the default, 0. A

simple way to avoid changing this cut-off is to increase F (0, 0, 0) artificially.

•MAX DENS. An upper cut-off for the density (in electron/cubic Ångstrom) used by the complex conjugate

solver. The default is an unrealistically large number (1010.). It is difficult to imagine circumstances under

which you might want to change it.

• R STOP. A (fractional) value for the overall R factor that will cause the solver to terminate a run.

• MODE. The associated string should be either “completion” or “correction”. In completion mode, Solve

assumes that the starting electron/voxel file in physical space represent a correct (if incomplete) model. It
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uses the optimization algorithm to search for missing electrons only. In correction mode, Solve makes no

such assumption about the input model. In this case, Solve may change the starting electron model (elec-

tron/voxel file) in the optimization process — i.e., it is capable of adding, moving and removing electrons,

so long as the resulting density remains everywhere non-negative. In either mode, the output of Solve is the

full set of electrons/voxel, i.e., the recovered plus the initially known electrons at each grid point. We highly

recommend using the default “correction”.

• DISCRP FRAC A fraction to multiply the usual discrepancy fraction, used to determine whether the

solver should stop looking for a better solution. In the default, DISCRP FRAC = 1. The solver then stops

when the recovered ||Fcalc|| fits the experimental Fobs to within its standard deviation, σ, on the average.

Sometimes, you may be optimistic and set DISCRP FRAC to, say, 0.3. If you don’t trust the quality of the

data, you could use a value that is higher than 1.

• TITLE. Any string; it will be written into the log.

• USESIG. A switch (TRUE or FALSE) governing the usage of the SIGMA field in an fobs file. By default,

the σ’s are used.

3.4 Intermediate Binary Files

For purposes of retaining electron/voxel information in a compact fashion, Eden uses a binary file format

identified by the suffix .bin. The information in this file is the voxel-by-voxel listing of the number of

electrons and includes the 3 spatial dimensions of the problem plus the double grid (simple plus intercalating)

where applicable.

3.5 Log Files

Each of the programs that may be invoked by Eden produces a log file whose name is solve.log or

apodfc.log, etc. – i.e., the name of the program that was invoked, with the standard .log suffix. All

messages that come to the terminal, be they informatory, warning or error, are also written to the log. There

is usually added information, in particular if the verbose switch (-v) is in effect.

If there is already a file such as solve.log in the directory from which you now rerun Solve, the new log

will normally be written to solve1.log. Up to 10 log files from a single Eden program may co-exist,

with names solve.log, solve1.log, . . . , solve9.log. This is good in that it prevents inadvertent

clobbering of logs, but it can also be a nuisance if you forget that the basic solve.log may not be the

most up-to-date! You can disable the multiplicity of log files by invoking Eden with the -b switch (b for

batch; useful when running scripts).
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The Solver without MIR or MAD

4.1 Preparation of Input

In this section, we discuss setting up a real problem that has neither MIR nor MAD. The required tasks

(represented schematically in Figure 4.1) are:

• problem definition

• resolution choice

• (for anomalous data) structure factor expansion to P1

• structure factor apodization and absolute scaling

• consistent model preparation

• (optionally, solvent target preparation)

4.1.1 Problem definition

It is presumed that you know the values to be used for cell and symmetry, which are properties of your

crystal. Values for cell are the usual set of unit cell dimensions — a, b and c, in Ångstroms, followed by

the angles α, β and γ in degrees. Eden checks that the input cell dimensions and angles are consistent with

restrictions imposed by the space group. Eden is implemented for all space groups.

Regardingmode, if the problem is in reasonable shape, you will probably want to use (the default) correction

mode. In this case, the solver makes no assumption about the correctness of the starting structure factor

model file; it will change the model in the optimization process — i.e., it is capable of adding, moving and

removing electrons, so long as the resulting density remains non-negative.

However if the problem is more than about 50% unknown, you may want to use completion mode. In this

case, you will assume the correctness of the model, at least in an initial Eden run, and allow the solver to

recover missing electrons. The starting model is not eroded. However, electrons may be added at positions

where the model claimed a certain electron/voxel level.

Apart from the selection of mode, there are other ways in which Eden can direct the solver to maintain or

change electrons in designated parts of the unit cell, e.g., by using the known part as a “protein” target, with

15
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STEP EDEN RUNS OUTCOME

1. Problem definition ! (none)

cell, symmetry,
mode,F (000),
fc filename(1)
fo filename(1)

2. Resolution choice ! (none) resolution

3. Apodization and !

Absolute Scaling

Apodfc
Apodfo

fc filename(2)
fo filename(2)
fscale

4. Consistent model ! Back md filename

5. Constraint(s) !

(optional)

Apodfc, low res
Back
Forth
Maketar

ta filename1,
wt filename1, relwt con1
(etc.)

Figure 4.1: Preparations for Solve without MIR or MAD
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a mask around it that makes Eden maintain the part you want and leaves everything else free to change. See

Chapter 6.)

Problem definition requires that you also estimate the total number of electrons in the unit cell, F (0, 0, 0), in-

cluding both protein and solvent (ordered and disordered). In the absence of any specific information, assume

that protein has an average density of 1
2 electrons/Å

3 and solvent has an average density of 1
3 electrons/Å

3.

Let Np represents the number of electrons of the protein atoms in the full unit cell (i.e., all copies of the

protein within the unit cell) and V the unit cell volume. It is easy to show that

Fobs(0, 0, 0) ≈ 1
3
(V + Np).

Np can be estimated using the pdb information; it is shown in Table 4.1 that the “generic” residue has

Zave = 59.4 electrons. Thus Np ' 60 ∗Nasym ∗Nres, where Nasym is the number of asymmetric units in

the crystal and Nres is the number of residues in an asymmetric unit. The precise value of F (0, 0, 0) is not

very critical to the success of Eden; it is probably best to err on the low side by about 10 – 20%. The estimate

should be included as the first entry in the fobs file (a special “reflection” at h = 0, k = 0, l = 0) and should

be accompanied by a corresponding SIGMA entry, representing the standard deviation of that value (if you

plan on using σ’s). In the absence of better information, use
√

0.1 ∗ Fobs(0, 0, 0). The fcalc file should also

have an F (0, 0, 0) entry: Fcalc(0, 0, 0) = Np with a phase of 0◦. If the fcalc file was calculated to “infinity”

with X-PLOR/CNS, it will already contain this entry.

4.1.2 Resolution Choice

The value of resolution should be your estimate of the data resolution. Eden will use a grid whose spacing

in the three dimensions — δa, δb and δc — is approximately 0.6 ∗ resolution for a simple grid type or

0.7 ∗ resolution for a body-centered grid type. The precise values of δa, δb and δc and the corresponding

dimensions of the grid, Na, Nb and Nc, are obtained as follows: the cell dimensions are divided by the

desired spacing and the resulting values are rounded to the closest even product of multiples of primes

less than 19. That procedure is required for the Fast Fourier Transform function used by Eden (FFTW)1.

Additional constraints may be imposed for specific space groups: thus, for example, if the space group is

P41, P43 or P432,Nz must be divisible by 4, and if the space group is P3121 or P3221, it must be divisible

by 6.

It is important to remember that all the procedures in steps 3 – 7 in Figure 4.1 depend on resolution, so

they must all be repeated if you change that resolution.
1http://www.fftw.org
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4.1.3 Apodization, B Factors and Absolute Scaling

Apodization is surely the most unfamiliar concept that you will encounter in Eden. Remember that Eden

assembles the electron density from little blobs, regularly spaced on a lattice. Now, if the real atoms in the

crystal are much narrower than the blobs themselves, this sort of assembly cannot work. In fact, it is the

surest way to make Eden go berserk! The recipe to avoid such a problem is to smear out the atoms to be

at least as large as the blobs. In crystallographese, you have to increase the B factors of your atoms. In the

more customary scientific jargon, this is called apodization (literally. “taking off its feet”)

The preprocessors Apodfc and Apodfo do this. They carry out an analysis of the structure factor data that is

similar to a Wilson plot. They are used for preparing smeared versions of the “raw” fobs and fcalc files (and

also, as you will see below, for determining the scale factor (fscale), that places the fobs on an absolute

scale ).

The inputs to Apodfc and Apodfo are identified by the suffix (1) and the smeared versions are identified by

the suffix (2) in Figure 4.1. Insofar as they determine that apodization is required, Apodfc and Apodfo write

smeared files whose names are derived from their input fcalc or fobs file name by appending apo to the

base name (to the left of the fobs or fcalc extension). Using an input named mymod.fcalc, Apodfc

would write a file named mymod apo.fcalc.

Apodfo and Apodfc read structure factors from an input fobs or fcalc file; they average the squared ampli-

tudes, ‖F‖2, within shells of equal thickness in a space of 1/d2, where F stands for Fobs or Fcalc and

1/d2 = (h2/a2) + (k2/b2) + (l2/c2)

(or its generalized form for non-orthogonal crystals [6]).

Calling the shell averages< ‖F‖2 >, the programs prepare ln(< ‖F‖2 >) as a function of 1/d2. They then

find the slope of that (very roughly) linear function. They use two methods for deriving the slope: one is a

straightforward least- squares minimization; the other more sophisticated method uses a “universal” protein

correction factor [3] that suppresses much of the non-linearity. If you run the apodization programs with the

-g switch enabled, graphs using both methods are presented for your inspection (under Xmgr) and we also

print out our recommendation in the terminal report – but you may make your own choice. This is discussed

at greater length in Section 8.1.

Apodfc and Apodfo determine the appropriate factor (δfo or δfc ) to be used for smearing the experimental

data. They use δfo or δfc to write out the apodized file (insofar as the factor is greater than zero; otherwise,

you should use the original unapodized file.) Once the apodized file has been written, you need not worry

about the particular δfo or δfc used; it is no longer needed as input to Solve. The actual process of apodiza-

tion is quite critical to the success of Eden’s solver and the fitting to determine the slope is a non-trivial

procedure. For these reasons, we strongly urge you to inspect the Wilson-like plots and to read the detailed
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information on apodization in Section 8.1. Note too that the apodization of fobs data uses σ values (insofar

as they are present) unless you turn off the USESIG switch.

Next we consider scaling, which is usually done as a part of Apodfo. It cannot be stressed too often that all

structure factors used in Eden must be on an absolute scale. In our experience, careless scaling is the one

most common cause of poorly resolved electron density in Eden.

The relationship upon which all scaling is based may be written in the form

< ||Fh||
2 >=

∑
Z2

i e−B/4d2

or

ln(< ||Fh||
2 >) = ln(

∑
Z2

i )−B/4d2,

where Fh is the absolutely scaled structure factor corresponding to h = (h, k, l), Zi is the number of

electrons for the i-th atom, B is an average B-factor, and

1/d2 = (h2/a2) + (k2/b2) + (l2/c2)

(or its generalized form for non-orthogonal crystals [6]). Thus the graph of ln(< ||Fh||
2 >) as a function of

1/d2, called a Wilson plot, should ideally be a straight line and, if the structure factors are absolutely scaled,

the y-intercept of that line at 1/d2 = 0 satisfies

ln(< ||F0||2 >) = ln(
∑

Z2
i ).

If y0, the y-intercept of the Wilson plot, is then measured for structure factors whose amplitudes are not

necessarily scaled on an absolute scale and the value of ln(
∑

Z2
i ) is known, the scaling factor to be applied

to those structure factors will be:

fscale = exp[−(y0 − ln
∑

Z2
i )/2] =

√∑
Z2

i /ey0 .

Note that the fobs data are scaled to the fcalc and not the other way around (as is the usual case in X-

PLOR/CNS). The plot of ln(< ||Fh||
2 >) as a function of 1/d2 is not actually linear at either very high

resolutions or very low resolutions. (This effect is corrected in true Wilson plots, but not in Eden’s Apodfo

or Apodfc.) At low resolutions, the solvent distorts the Apodfo plot. However, in an intermediate region,

bounded (by default) by 3.5 Ångstrom at the low-resolution end and by 0.05 Ångstrom at the high-resolution

end, the plot is linear enough that it may be used to estimate the y-intercept. That intercept is always reported

as part of the output of Apodfo and Apodfc. The bounding resolutions may be changed as part of the input

to Apodfc and/or Apodfo.

How should you obtain a value for fscale? After running Apodfo (or Apodfc), a file with extension wil

contains the Wilson-like plot of the apodized fobs (or fcalc) data; if two such files – one for the fobs and
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one for the fcalc – are already correctly scaled, those plots should essentially coincide over a fair range of

abscissa values and thus: fscale = 1, If not, one should be able to force coincidence by adding or subtracting

a fixed value to the fobs plot. A mechanism for doing this using least-squares minimization exists in Apodfo.

Suppose that you have first run Apodfc:

eden [-g] apodfc myparam myfc.fcalc.

Now (regardless of whether or nor you enabled graphics), there will be a file named myfc wil in the

directory from which you ran Apodfc. Next, you run Apodfo;

eden [-g] apodfo myparam myfo.fobs.

After finishing its apodization procedures, the program will ask you whether you want to scale — Scale?

- y or n. If you answer y, it will request the name of the file containing fc infomation; type myfc wil

(possibly with a directory prefix). It will then provide you with its best-fit value of fscale and will write a

file myfo wil containing the scaled Wilson-like plot. If you enabled graphics, the two wil files will also

be displayed for your inspection. See also Chapter 8.

Here are also three alternative methods for scaling. (a) If you have a reasonably good model, it is fairly

simple and accurate to use the intercepts reported by Apodfo (y0,obs) and by Apodfc (y0,calc) to calculate

fscale:

fscale = exp[−(y0,obs − y0,calc)/2].

This method might be used for confirming the results of the more precise scaling procedure described above.

(b) Sharp’s method: If you do not have a good model, you can use the value of ln(
∑

Z2
i ) derived from the

protein composition, as given in the pdb file, in place of y0,calc. Table 4.1 shows
∑

Zi and
∑

Z2
i for each

amino acid and for the “generic” protein which is an average, weighted by the relative abundances of each

amino acid in proteins [4]. The data in Table 4.1 are not currently a part of Eden. However, the value of
∑

Z2
i for the full unit cell, based on the pdb file (and thus excluding at least disordered water) is calculated

and reported in the Eden utility Sym.

(c) Even if you do not have a good pdb file, you surely do know how many residues are in the protein and

that will yield a fair estimate of ln(
∑

Z2
i ); use the observation (see Table 4.1) that the average value of this

sum for a single “generic” residue, Z2 is 357. Thus the full sum is ' 357 ∗ Nasym ∗ Nres, where Nasym

is the number of asymmetric units in the crystal and Nres is the number of residues in an asymmetric unit.

Note: asymmetric unit, not molecule; if your crystal has non-crystallographic symmetry, you should sum

over the molecules so related.

4.1.4 Consistent Model Preparation

Once the fcalc file is properly apodized, you must prepare electron/voxel files in physical space from it. This

is accomplished by running Back with fc filename(2) as input — see Section 8.3.

Note the naming conventions: if you run
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Table 4.1: Sum of Z and Z2 for Protein Components

Residue
∑

Zi
∑

Z2
i relative

abundance[4]

Ala 38 226 8.3
Arg 85 489 5.7
Asn 60 376 4.4
Asp 59 389 5.3
Cys 54 482 1.7
Gln 68 414 4.0
Glu 67 427 6.2
Gly 30 188 7.2
His 72 434 2.2
Ile 62 340 5.2
Leu 62 340 9.0
Lys 71 391 5.7
Met 70 558 2.4
Phe 78 446 3.9
Pro 52 300 5.1
Ser 46 290 6.9
Thr 54 328 5.8
Trp 98 568 1.3
Tyr 86 510 3.2
Val 54 302 6.6

Mean 59.4 357 100

eden back abc

using an input file abc.inp, Back will generate a file named abc back.bin. The name of the input

fcalc file, identified as fc filename(2) in Figure 4.1 and appearing as the value associated with keyword

FC FILENAME in the input parameter file abc.inp, is no longer in evidence; it is no longer needed.

4.1.5 Target Preparation

The following discussion is only an example of Eden’s capability to impose physical-space constraints. A

more extensive discussion will be given in Chapter 6. This example relates to Eden’s way of imposing

solvent flattening. If you know which regions in the crystal are occupied by the solvent, you have a powerful

tool for increasing Eden’s capabilities. However, the use of solvent flattening or, as it is known in Eden,

a solvent target, is optional and may not be appropriate if the location of large parts of the molecule are

unknown. The description that follows can, of course, be scripted; all its parts run fairly or very fast and

need little attention from you.

In order to prepare a solvent target, you will need an fcalc file corresponding to your best model, from
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which you have eliminated all the solvent. Obviously, the model need not be all correct — if it were,

your job would be done! — but it should cover the basic volume of the full protein. The first step is to

run Apodfc at a very low resolution (for example, set keyword APOD RES to 7.0 Ångstrom) 2. Then use

the output of Apodfc as the FC FILENAME value and run Back at the regular resolution. This provides

a highly smeared version of the protein in physical space, at the same gridding resolution as your other

electron/voxel files. Next, run Maketar, which prepares two binary files with fixed names: weight.bin

and target.bin. The file weight.bin contains weights of 0 or 1, where 1 indicates a solvent point

and 0 indicates a protein point. The file target.bin contains the target value associated with the solvent

regions (typically, the electron/voxel value corresponding to 1
3 electrons/Å

3). These two files should be used

as is in the Solve process, where (assuming that the solvent target is constraint # 1) target.bin serves

as the value associated with keyword TA FILENAME1 and weight.bin – as the value associated with

keyword WT FILENAME1. The solver process is set up to deal with arbitrary weights in the range (0,1),

with allowance for levels of uncertainty in your knowledge of the content of a voxel, but Maketar does

not currently use this capability. Maketar will, by default, set roughly 50% of the unit cell to be solvent.

This default may be overridden if you have reason to believe that the solvent region of the crystal deviates

significantly from 50%. Maketar also allows you to set the solvent density to any value. By default, the

solvent density is 0.34 electrons/cubic Ångstrom.

Finally, you must also select the relative weight to use in Solve for imposing the solvent target as an opti-

mizing condition. You may have to try several values for this relative weight; a value less than 0.001 will

probably be ineffective, while a value greater than 0.1 will probably enforce the target solvent value much

too strongly giving rise to a visible “edge”. For determining the relative weight, you should examine the

cost function report. Typically, at least in the first outer iteration, the target contribution should be relatively

small; later, it should approach the hkl contribution or even surpass it. See Section 6.5.

4.2 Running Solve: the Optimization Process

Invoke the solver by typing

eden [-v] solve name

where name.inp contains the input parameters.

Switch -v is the verbose switch; it sends the running output of the cost function (which is described in the

rest of this section) to a file named name.cost, for your inspection. We do recommend using this option,

particularly if you have constraints; otherwise, it is difficult to assess whether the relative weights of your

constraints are appropriate.

The main loop of Solve is devoted to finding an optimal set of electrons per voxel. The search, using a
2Another way to prepare an fcalc corresponding to the solvent region uses X-PLOR/CNS; see also Section 8.4.
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conjugate gradient solver [7], is conducted in physical space; the cost function value, used for deciding

how to progress in the search, has both physical-space and Fourier-space components. We first consider the

general flow of control, then the cost function.

There are two levels to the iteration process — an inner loop and an outer loop. The inner loop is contained

within the conjugate gradient solver which continues to search until one of a number of criteria is met. These

criteria include “normal” exits: the gradient has fallen to a preset fraction (dfdx crit) of its initial value; the

cost function is essentially zero; a (local) minimum in the solution surface has been found. Another reason

for stopping is that the discrepancy principle was satisfied; this means that the amplitudes of the calculated

structure factors fit the observed structure factor amplitudes to within their measurement error. This happens

when the cost function has fallen below a minimum dictated by the σ values in the input fobs file [15].

Letting h stand for the (hkl) triplet and Nh for the number of measured structure factors, the minimum is:

fmin =

[
(Nh/2)

Nh∑

h=1

w(h)2
]

/

[
Nh∑

h=1

w(h)2/σ(h)2
]

where the weights, w(h) are 1 wherever there is a data value at h, 0 otherwise. This stopping condition

effectively prevents Solve from overfitting the diffraction data. You have added control over this ending

condition via the discrepancy fraction, DISCRP FRAC .

Occasionally, there are pathological end conditions. One such reason to stop the search is that a hard-wired

maximum number of calls to the search function was reached. In our experience, this is a symptom that the

solver is truly stuck in some local minimum.

After the conjugate gradient solver returns to the outer iteration loop with its best effort, Solve resymmetrizes

the solution (see Section 4.3). It recalculates the R factor and the standard deviation between fobs and

newly updated fcalc data; it writes out the current electron/voxel files; and then it applies its own criteria

for continuation. If the standard deviation is not decreasing; if the changes in the electron/voxel files are

essentially nil; if the R factor has fallen below a preset cut-off (r stop); or if the discrepancy principle (see

Chapter 11) is satisfied — Solve stops.

Since interim information is written out after each outer loop iteration, you may kill the Solve run (if you

sense that it is not getting anywhere) without losing more than the most recent partial outer loop iteration.

In fact, unless you are unlucky, an interrupt will trigger the Solve process to write out all its most current

information before quitting.

It may seem that the R factors (reported as fractions, not percentages) achieved by Solve are remarkably low,

but our experience has been that their significance is limited. Eden does not do conventional refinement. It

does not incorporate chemical information, such as bond angles and bond lengths. Thus very low R factors

may be achieved without the corresponding electron density maps being necessarily meaningful. If the

number of unknowns (electrons/voxel) is much larger then the number of equations (number of reflections),
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the solver will always be able to overfit a “solution” for which the R factor is essentially 0.

The physical-space solutions that are calculated after each outer iteration are over-written to a file: in the

example of Section 2.1, the name was floor.bin.

The cost function always has a Fourier-space component (which may include MIR or MAD terms). There

may also be a phase extension cost function in reciprocal space. The cost function may also have one or more

physical-space components, each governed by its own relative weight. The physical-space components can

include one or more target cost function(s) among others. See Chapter 6.

4.3 Maintaining Crystal Symmetry

After each of the outer iterations of Solve and before writing electron/voxel arrays to disk, the arrays are

symmetrized according to your space group. Differences among the electron/voxel values at symmetry-

related points that exceed 10% of their average are noted and the number of such aberrant points is reported

in the log. The rms fractional distance between the electron/voxel values before and after symmetrization is

also noted. In a more heavy-handed way of enforcing symmetry, it is possible to use a crystal symmetry cost

function and “encourage” symmetrization of the electron/voxel arrays at each internal step of the optimizer

(see section 6.4).

One might expect crystallographic symmetry to be maintained without any special provisions, since inter-

nally, the fcalc and fobs files are checked and expanded to P1 based on the appropriate space group. In

particular, forbidden reflections are explicitly set to zero and are included in the fobs set, while missing

reflections that are not forbidden are not included in the optimization process. In fact, our experience is that

gross crystal symmetry violations in the first outer iteration of the solver are fairly infrequent and generally

represent errors in the input. There are certain exceptions to this: if your model file was prepared using a

version of Sfall that is not up-to-date (say, V1.5), there may be inconsistencies in centric reflections. Also,

if the data are twinned, you may see this phenomenon. See Section 7.3.

Note too that in later iterations of Solve, especially when there are spatial cost functions, numerical instability

can apparently cause some violations of crystal symmetry but not gross violations.

4.4 Output from Solve

In addition to a running log named solve.log3 Solve produces the following output, updated after each

outer iteration:

• name.bin, containing the current solution in physical space and (if high-resolution is in effect)

• name.list.

If you run Solve with the -v (verbose) switch, there will be further output:
3or solvem.log, where m stands for the first available digit in range 1 – 9. You can check the latest log name in the history file.
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• name.cost

• outlier0

name.cost contains the cost function for the native and for each constraint, recorded at each call to the

function that calculates the cost. If there is MIR or MAD, the derivative costs are also recorded. The file

outlier0 contains information about those reflections whose current ||fcalc|| differ by more than 4σ

from the input fobs. The information contains: d, nsig, h, k, l, Fobs, ||Fcalc||, and σ, where d is the

resolution of the reflection:

1/d2 = (h2/a2) + (k2/b2) + (l2/c2)

and

nsig = (Fobs− ||Fcalc||)/σ.

It is usually most convenient to sort outlier0 by the nsig field in order to study the very far outliers. (For

example, use sort -nr +1 <outlier0 >soutlier0.) General information about the distribution

of nsig among all reflections is to be found in the log, when the -v option is in effect. Although it is unlikely

that your data will behave like a true Gaussian distribution, you may hope that, by the end of the Solve run,

the percentage of far outliers will be fairly small. Note that when the solver is run with MIR or MAD,

corresponding files outlier1, outlier2, etc. are written for each derivative. In this case, the value of

nsig is multiplied by the appropriate relative weight. Note too that if, for some reason, you are not using the

σ’s, the outlier report will be meaningless, since Eden will use σ = 1 everywhere. The outlier report can be

useful for checking the proper scaling of experimental data and the spotting of some glitches in it.



Chapter 5

The Solver with MIR or MAD

5.1 Overview

Up to this point, we assumed that you have a single set of experimental data, you have solved your protein

at least partially and you have a reasonable model which you wish to complete and correct using Eden.

Now we will consider other more usual starting points for the determination of a protein structure. In

addition to (or in place of) the native crystal measurement, you may have a series of measurements for 1

or more derivative protein crystals and a good idea of the positions, occupancies and B values of the heavy

atoms in each of these derivatives. You may also have a starting MIR phase set, derived, for example, from

PHASES, MLPHARE, SHARP or SOLVE. Additionally or alternately, you may have a series of anomalous

dispersion measurements and, again, knowledge of the positions, f ′, f ′′, Z values, B values and occupancies

of the wavelength-dependent anomalous scatterers. All these data set may have their own (probably lower)

resolution.

In such circumstances, Eden is useful for fine-tuning a solution and for quality checking. It is worth the

trouble if you want to get an electron density that optimally uses your hard-won data or if you care to know

how isomorphous your derivatives are. In principle, the model you publish and deposit in the Protein Data

Bank should improve by the full, optimal use of X-ray data. This, however, is very hard to quantify and we

know of no documented body of experience with it.

Eden’s Solve program handles problems with MIR and/or MAD data by treating native and all other structure

factors on an essentially equal footing. In the optimization process, Eden minimizes a cost function which

is the sum of weighted terms, one for each measured structure factor; terms are proportional to the squared

differences between the calculated and measured structure factor amplitudes. Now let us assume that we have

– say – one further set of MIR measurements in addition to the native ones. We can then set up a second

cost function that measures the difference between two new sets of structure factors: the native calculated

structure factor amplitudes are replaced by ones that include the heavy atoms, while the native measured

data is replaced by data from MIR derivative crystal measurements. Eden then minimizes the native plus

26
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derivative simultaneously. ForM derivatives, there are (M +1) sets of equations to replace the single set of

equations in our previous discussion, from which the Gaussian blobs for the native are to be found. The cost

function contains (M + 1) times as many terms as in the simple run. Note that this procedure does assume

complete isomorphism between native and derivative, except for the heavy atoms.

The main difference between the MIR and MAD cases is in the expansion of the data to P1, which will be

discussed in Section 8.2. In this manual, we use the term “derivative” to refer to either an MIR derivative or

a MAD data set. The MIR or MAD algorithm is discussed in [11] and [14]. Solve will search for the native,

or (in the case of MAD) a fictitious native — i.e., the part of the molecule that has no anomalous scattering.

Once again, we refer you to [14].

In this chapter, we will first consider the new input parameters for an MIR or MAD run and the new prepa-

ration steps that are to be added to those described in Section 4.1 for apodizing and scaling all the data

sets. Section 5.2 discusses the way in which the positions and occupancies of the heavy atoms may be more

precisely pinpointed, by doing a series of preliminary Solve runs at relatively low resolution.

When you have satisfied yourself that the heavy atoms are correctly described and the data sets are optimally

scaled, a high-resolution run will generally yield a much improved set of electron densities. In such a

high-resolution run, there is no difficulty (in fact, there is a distinct advantage) in combining MIR or MAD

processing with a solvent target. In preparation for the high-resolution run, you may replace the original

native model file by the best output from the preliminary runs; this improved model should serve both for

purposes of preparing the solvent target and for use as a starting model in the high-resolution run. Finally,

Eden may be used as an excellent check of isomorphism: take the best result from the high-resolution MIR

or MAD run and use it as a starting point versus the single data set for the native and versus each of the

derivative data sets separately. Insofar as the results diverge from one another, you will be able to gauge

where and by how much the original crystals did not have complete isomorphism.

5.2 Preparation of Input with MIR or MAD
5.2.1 MIR and MAD Input Parameters

Input parameters for a Solve run with MIR or MAD consist of exactly the same set of input parameters as

were described in Section 3.3 and Table 3.2, plus the following ones shown in Table 5.1. The table lists file

names and scaling factors for 2 derivatives; this is an example only; you may have as many as 8 derivatives.

These input parameter are now briefly discussed; [m] stands for 1, 2, ..., NDER:

• FO DER FN[m]. The name of the fobs file for the m-th derivative. (FN stands for “filename”).

• FC HEAVY FN[m]. The name of the file containing calculated structure factors for the heavy atoms. Note

that this file contains “hydrogen-like” structure factors — i.e. the value of Z is not used in their calculation.

The appropriate Z, together with f ′ and f ′′ are applied within Solve.
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Table 5.1: MIR or MAD Input for Solve

Keyword Example of value description default

NDER 2 # no. of MIR or MAD derivatives 0
FO DER FN1 xglpb apo.fobs # 1st deriv fobs file none
FC HEAVY FN1 mod1 apo.hkl # 1st heavy atom fcalc file none
FO DER FN2 xglhg apo.fobs # 2nd deriv fobs file none
FC HEAVY FN2 mod2 apo.hkl # 2nd heavy atom fcalc file none

for MAD only

Z1 76 # At. no. 1st heavy atom none
FP FPP1 -17.2 20.1 # f ′ f ′′ for Z1 at 1st λ none
Z2 76 # At. no. 2nd heavy atom none
FP FPP2 -21.6 16.4 # f ′ f ′′ for Z2 at 2nd λ none

where λ stands for wavelength

(and optionally)

RELWT NATIVE 0.9 # relative weight of native 1
RELWT DER1 0.5 # relative weight of 1st der. 1
RELWT DER2 0.9 # relative weight of 2nd der. 1
RES DER1 2.5 # intrinsic resolution of 1st der. (native)
RES DER2 1.9 # intrinsic resolution of 2nd der. (native)

FSCALE DER1 1.3 # fobs scaling factor, 1st der. none
FSCALE DER2 1.1 # fobs scaling factor, 2nd der. none
AUTOSCALE FALSE # fine-tune fobs scaling? TRUE

• Z[m]. The atomic number for the m-th derivative (MAD data). Nomally, if there are 2 sets of MAD data,

Z1 = Z2.

• FP FPP[m]. Values of f ′ and f ′′ for the m-th atom (MAD data).

• RELWT NATIVE. This is the weight associated with the native data in the cost function. If you do not

have an observed data set for the native, you should set relwt native to 0 and use any available (dummy) file

name for fo filename.

• RELWT DER[m]. This is the weight associated with the m-th derivative data relative to the native in the

cost function. The default should be used in preliminary runs, but see also Section 5.3.2.

• FSCALE DER[m]. This is the factor for scaling fobs data to absolute scale for the m-th derivative.

• RES DER[m]. This is the resolution of the m-th data set, insofar as it differs from the native resolution.

• AUTOSCALE. It is our experience that the success of MIR or MAD runs is highly sensitive to the precise

scaling of the fobs files among themselves. Generally, it is useful to fine-tune this scaling between outer

iterations of the Solve process by enabling autoscaling. The code then changes the relative scales of the

derivatives such that the overall cost function is minimized. The AUTOSCALE parameter allows you to
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by-pass this fine-tuning, if you wish.

A particular new procedure in setting up an MIR or MAD run, as compared with the single run discussed

in Section 4.1 (with no MIR or MAD), lies in the scaling of the various data sets among themselves. The

complete process is thus (Figure 5.1):

• problem definition

• resolution choice

• structure factor apodization (all hkl files)

• absolute and relative scaling

• consistent model preparation

• (optional) solvent target preparation

5.2.2 Preparation of Native Fcalc File

In a preliminary Solve MIR or MAD run, it is obviously best to start with some partial knowledge of the

native electron density, based on the output of PHASES or MLPHARE, for example, suitably manipulated

to convert it to X-PLOR/CNS format (see Section 3.2). Then the native fcalc file should be run through

Apodfc. It must then be used to create a consistent model, as described for simple Solve runs, by running

Back on it. If you have such a native electron density file, your Solve runs should be done in correction

mode.

However, in your first Solve MIR or MAD run, the initial native structure factors may be unknown. In this

case, use the special pseudo-name “empty” for the keywords FC FILENAME and MD FILENAME.

5.2.3 Preparation of Heavy Atom Fcalc Files

Fcalc files must be set up to contain structure factors corresponding to the heavy atoms, with appropriate

occupancies. It is essential that the heavy atom structure factors be on an absolute scale. The program

Phases, for example, does not scale the heavy atoms on an absolute scale. In the absence of any other

program from the standard crystallographic repertoire, preparation of the heavy atom structure factors may

be done using the Eden utility Tohu (see Chapter 11). It is possible to process MAD anomalous data in

Tohu if you set keyword ANOM to TRUE. In that case, Tohu will calculate and write out structure factors for

“hydrogen” atoms at the specified positions; further processing (using Z, f ′, and f ′′) is relegated to Solve.

Note that although Tohu assumes point-like atoms, it does use the heavy atom occupancies and B factors

and it does put the output on an absolute scale. In all cases, the resulting fcalc file should be run through

Apodfc and inspected, to be sure that the least squares fitting of the plot to a linear approximation and the

resulting smearing factor is appropriate. Finally, it must be put through Back to ensure a model gridded

physical-space file for Solve. All of these preprocessors are discussed again in Chapter 8.
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STEP EDEN RUNS OUTCOME

1. Problem definition ! (none) cell, symmetry,
mode

2. Resolution choice ! (none) resolution

3. Apodization !

Scalings

Apodfc
Apodfo

fc filename(2),
fc heavy[m](2)
fo filename(2),
fo der[m](2)
fscale, fscale der[m]

4. Consistent models ! Back md filename,

fc heavy[m](3),

5. Solvent target !

(optional)

Apodfc, low res
Back
Maketar

ta filename1,
wt filename1, relwt con1
(etc.)

Figure 5.1: Preparations for Solve with MIR or MAD
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5.2.4 Preparation of Derivative Fobs Files

Derivative fobs files may need to be apodized using Apodfo, exactly as the native fobs file was. Please

remember that each file should contain an F (0, 0, 0) term whose value is your best estimate of the total

number of electrons in the unit cell of the MIR or MAD derivative data file, including both ordered and

disordered solvent.

In principle, you can find the scale factor, fscale der[m], for scaling fobs to an absolute scale in the same way

that you find fscale for the native. However, it is more accurate to find a relative scale factor rel fscale[m]

for the derivative with respect to the native. Then

fscale der[m] = rel fscale[m] ∗ fscale

The value for rel fscale[m] may be derived from the two intercepts reported for Apodfo when it is run

using the native fo filename and when it is run using the derivative fo der[m]. If the reported intercepts are

y0,nat and y0,der respectively, the required value is

rel fscale[m] = exp[(y0,der − y0,nat)/2]

Since the intercepts are determined by extrapolating the linear approximation to the plots, they are also prone

to error. Thus, although you may use this formula for estimating rel fscale[m], it is safer and more accurate

to work graphically. Let us assume that you wish to scale Hgder.obs to nat.obs. Running Apodfo on

each of these files will give for each a Wilson plot; after you have chosen the δfo that is the best fit, Apodfo

will write out files nat.obs wil and Hgder.obs wil. Now plot these two and look for a (positive

or negative) constant, ydiff that, when added to Hgder.obs wil will best bring it into coincidence with

nat.obs wil. Then use

fscale = exp[ydiff/2]

for scaling. In this way, the most reliable mid-resolution data can be used for scaling. If – as is usually the

case – the derivative has a lower resolution than the native, you should apodize the native to the intrinsic

resolution of the derivative (reported by Apodfo) for purposes of scaling.

5.3 Running Solve with MIR or MAD
5.3.1 Scaling Issues for MIR

Let N refer to the native and D to a typical derivative; for purposes of this discussion, we will consider the

m-th derivative. Several parameters govern the behavior of the MIR solution process, the most important

ones being: the scaling of fobs to fcalc data for the native, fscaleN ; the comparable scaling of fobs to fcalc

data for the derivative, fscale der[m], which we refer to as fscaleD; and the occupancy of the heavy atom
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sites in the derivative, OccD. Another parameter in the cost function calculation is the weight associated

with the cost function for the native, relative to the cost function for the derivative. When the fobs data have

σ values, the relative weights of individual reflections are set automatically on their basis; otherwise, they

are all set to be 1. Finally, the total number of electrons in the native and derivative molecules (including

solvent) plays a role, but it is assumed that these numbers are well enough known.

Let ρN be the electron density of the native and ρH be the electron density of the heavy atoms in the

derivative. The fundamental assumption is that the total electron density in the derivative, ρD, is

ρD = ρN + OccH ∗ ρH

We shall write F(ρN ) for ‖FcalcN‖ and F(ρN + OccH ∗ ρH ) for ‖FcalcD‖. Then the conjugate gradient

process seeks to minimize the sum of the squares of two terms — termN and termD, where:

termN = F (ρN )− fscaleN ∗ FobsN

termD = F (ρN + OccH ∗ ρH)− fscaleD ∗ FobsD

If the scalings fscaleN and fscaleD are correct, but the occupancy OccH of ρH is too low, the code will

push some of the heavy atom contributions from ρH to ρN , decreasing termD and increasing termN in the

process — i.e., the heavy atoms will “show through” in the resulting native electron density. Conversely, if

the scalings are correct but the occupancy of ρH is too high, the code will cause the resulting native electron

density to have holes at the positions of the heavy atoms. If the occupancies are correct but fscaleD is too

high with respect to fscaleN , the code will again add density corresponding to heavy atoms to ρN in the

effort to minimize termD. Again, this will cause termN to rise, but presumably the lowering of termD

will more than compensate for it.

In summary, an MIR run that produces a native electron density with the heavy atoms showing through may

be the consequence of either of two errors: too low occupancy of the heavy atoms in the derivative, or too

high a scaling factor, fscaleD. Our experience has been that the latter error is more likely, since occupancies

of 1 are common and occupancies cannot exceed 1.

5.3.2 Preliminary Runs

Based on the ideas that were just discussed, we recommend that you start off the MIR runs at a relatively

low resolution (say, 3 Ångstom), without a solvent target. This will allow you to do a number of runs fairly

rapidly. In order to decide whether the occupancies and scaling are well tuned, you will need a display

program that allows you to examine two-dimensional slices of the binary data produced by Solve. We are

delighted to inform our readers that the latest version of PyMOL (experimental version 0.98) is capable of
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letting you examine slices in a quantitative fashion and, for example, enabling you to pinpoint unusually

high or low densities at well-defined positions.

For Solve runs in general, we recommend that you use the -v option; this will produce a listing of the

cost function components. A careful study of the sizes of the native and derivative cost functions will

indicate the degree to which the derivative data sets are reliable. If you find that a certain derivative seems

to give consistently high cost function values, compared to the native and other derivatives, you may want

to suppress its contribution by selecting a low value for relwt der[m] or even by omitting the derivative

entirely.

Once the data are pronounced well-scaled and the occupancies are correct, you are ready for a high-resolution

run. The only change in the preparation steps is that the starting model, that was previously either an empty

file or the output of Mlphare, for example, may now be replaced by the best result from your preliminary runs.

Be sure that all the preparation steps, including all the apodization runs, are redone at the new resolution.

5.3.3 Isomorphism Checks

The result of the high-resolution MIR run may be regarded as an approximation to the native crystal, pos-

sibly warped in the region of the heavy atoms where the native and derivatives did not display complete

isomorphism. Thus, you may wish to explore the native and derivative crystal structures separately. This

section deals with our (limited) experience in this regard. See also Section 6.2.

Consider an MIR run identified by its input file, say abc.inp. We would like to remove the bias in its

outputs that arose as a result of the “not-so-isomorphous” replacement. We take the native output file of the

MIR run, abc.bin and use it as input to a second, ordinary (non-MIR) Solve run. However, in order to

make sure that the Solve solution does not stray too far from our previous results, we also use the binary file

as a target! (The accompanying WT FILENAME should have the value full.) We have found that a very

low value of the relative weight such as 3 ∗ 10−3, is sufficient to keep Eden from straying too far from its

starting point, while still allowing the solver to correct errors from the original MIR run.

We then do similar runs for the derivatives, but now, we will need to do a couple of extra steps. First, we

prepare a structure factor file corresponding to the native result of the MIR/MAD run, by running Forth on

abc.bin. Then add to it the original structure factor file for a selected (m-th) derivative. For this you will

need a little utility, Cadhkl described in Chapter 11.3. Then, run Back to prepare a consistent physical-space

model. Now, from this starting point, run “ordinary” Solve as described above for the native. If you subtract

abc.bin from the output of this new Solve run, you will find the correct positions and shapes of the heavy

atoms, as well as the distortions of the protein caused by those heavy atoms. You can run Forth on this

difference and use the result as an improved fc heavy[m]. A 2nd full MIR run using all the (hopefully)

improved starting points shold give a better-defined electron density for the native.



Chapter 6

Physical Space Constraints

6.1 Overview

As described in Section 4.2, the search for an optimal set of electrons per voxel is conducted in physical

space. The cost function value has both Fourier-space components, of which the difference between observed

and calculated structure factors is the principal component, and physical-space components. It is the sum

total of all the components of the cost function that is used to guide the conjugate gradient solver in its search

for a minimum. At this point, we will discuss the physical-space components.

There are various kinds of physical-space (Np) constraints1 in Eden’s Solve program that may be applied,

together with the Nhkl space constraints, at each inner iteration of the optimization process. One of these,

target constraints, may be considered quite general in application. All the others are more specialized; they

may be appropriate only within a limited resolution range, for example. A comprehensive discussion of

spatial constraints is to be found in [16].

By default, there are no physical-space constraints: nconstraints = 0. The value of NCONSTRAINTS is

limited to a maximum of 12. In fact, it seems unlikely that more than 2 – 3 would be useful when applied

simultaneously. All constraints require two input keyword-value pairs — CON TYPE[n], which identifies

the kind of constraint, and RELWT CON[n], which identifies the relative weight to be associated with that

constraint, where [n] stands for a number of range (1, nconstraints). There are other inputs that are specific

to the constraint type; they will be introduced individually in the following sections of this chapter. Legal

values for con type[n] are: 2

target for a solvent or protein target.

solvent tar for a solvent target.

stabilize tar for a protein target.

phase ext for Eden’s version of phase extension,
1The term restraints would, in fact, be more suitable for our cost functions, since they do not absolutely constrain the solver but

instead, “encourage” it to a greater or lesser degree.
2The distinctions among target, solvent tar and stabilize tar are for reporting purposes only; the Solve code does not

actually distinguish one from another.
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cs for crystal symmetry.

Values of relative weights are typically in range 10−3 − 1. See also Section 6.5.

Each type of physical-space constraint will now be discussed.

6.2 Targets

Target constraints require the kind of input described in Table 6.1 — i.e., in addition to the standard input

(for all physical-space constraints), they require the names of two sets of files in physical space. One,

ta filename[n], contains the electron/voxel values that will be used as targets; the other, wt filename[n],

contains the weights associated with these values. Weights may be in range (0,1), but generally they are

either 0 or 1. There is a special pseudo-name — “full” — that may be used with keyword WT FILENAME,

signifying that all electron/voxel values are to be given a weight of 1.

Table 6.1: Target Constraint Input for Solve

Keyword Example of value description default

NCONSTRAINTS 1 # no. of target constraints 0
CON TYPE1 target # description of 1st constraint none
RELWT CON1 0.1 # rel. wt. for 1st constraint 0
TA FILENAME1 mytarget # name of 1st Np space target none
WT FILENAME1 myweight # name of 1st Np space weight none

Target constraints are applied in Eden’s Solve in the following form ([16]):

ftarget = Relwt ∗ Const ∗
Np∑

p=1

wt2p(np − np,targ)2

where np is the current electron/voxel value at a point p, np,targ is the targetted electron/voxel value at that

point, and wtp is the weight associated with the target at that point. Note that wherever the weight is zero,

the density is not constrained – i.e., it is free to change. The value of Const is proportional to the fraction of

total points that are targetted by the weight file.

Currently, target constraints may be applied in three scenarios: (a) for enforcing a well-established partial

model; (b) for a stabilizing target; and (c) for a solvent target.

(a) If you have a good partial model, the weight array should cover the partial model alone (i.e., it should

differ from 0 only where the current model is significantly greater than 0). A high relative weight (0.1−1.) is

appropriate. Note that a partial model target is potentially a stronger constraint than the basic “completion”

mode of operation of Solve: when the partial model is regarded as a target, its value will be maintained more
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or less unchanged — electrons will be neither added to it nor subtracted from it — but when Solve operates

in completion mode without a target, electrons may be freely added to the partial model.

(b) A stabilizing target is similar to a completion mode target, except that the model should be essentially

complete. A weight array containing all 1’s and a low relative weight are appropriate. A stabilizing target is

useful in almost any run; its purpose is to keep Eden from straying unnecessarily from the starting model.

Note that if there is too much freedom, i.e., not enough data, Eden is free to put “garbage” anywhere – and

it will.A stabilizing target ensures that the phase changes introduced by Eden are the smallest compatible

with the information supplied (such as the diffraction pattern, positivity, derivative information and solvent

regions). Insofar as there is no such information, Eden recovers a difference Fourier map.

(c) Solvent targets are probably the commonest form of constraint used in Eden. Our experience is that

solvent targets are especially helpful for extending the scope of Eden’s power to solve protein structures (see

[14]).

Eden’s Maketar was designed for preparing the weight files needed for all target constraints. See Section 8.4.

For a protein target, you should run Maketar, setting TARGET to “high”; in this way, the targetted points

will cover the protein rather than the solvent area. The mask fraction or threshold input allows you to

fine-tune the fractional level at which weighting kicks in. For a solvent target, the target array should contain

a value of about 0.34 el/cubic Ångstrom (converted to units of electrons/voxel) and the weight array should

cover whatever region is established to be the solvent, using X-PLOR/CNS, for example, followed by Eden’s

Back. Watch out with this procedure! X-PLOR/CNS prepares the solvent region with a positive value, the

non-solvent region with value 0, so from the viewpoint of Maketar, this is a “high” target.

An alternate (safer) way to prepare a solvent target is to run Apodfc with a very low resolution (high value

of input APOD RES) to prepare a smeared-out version of the known model; then run Back at the regular

resolution; and finally, run Maketar setting TARGET to “low”, thus targetting the solvent. You may have to

experiment to find a relative weight that is large enough to be effective, but not so large that the edges of the

solvent region are clearly visible in a false-color rendition of the final output. For determining the relative

weight, you should examine the cost function report. Typically, at least in the first outer iteration, the target

contribution should be relatively small; later, it should approach the hkl contribution or even surpass it, but

not by orders of magnitude.

6.3 Phase extension

The input for a phase extension constraint includes the same information as for target constraints, as well

as a phase extension resolution. See Table 6.2. Let us imagine that a credible .fcalc model of the prob-

lem at a resolution of 6 Ångstrom has been established. Call it prot6.hkl. We may use this solution as the

FC FILENAME and extend our knowledge of the protein details to higher resolution — say, 2.5 Ångstrom
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— in the following manner. We run Back using resolution = 2.5, to obtain a real-space counterpart for

prot6.hkl, but at a grid spacing that is compatible with the intended (higher-resolution) run. This model (call

it prot6m) will serve both as MD FILENAME and as TA FILENAME. This is a case where the appropri-

ate WT FILENAME may be “full” (i.e., all points will be assigned a weight of 1.0, without any need for

preparing a special bin file).

We will thus have the special input for phase extension as shown in Table 6.2.

Table 6.2: Phase Extension Constraint Input for Solve

Keyword Example of value description default

NCONSTRAINTS 1 # Number of constraints 0
CON TYPE1 phase ext # Description of constraint none
RELWT CON1 1.e-4 # relative weight 0
PHASE EXT RES 6 # inherent resolution of target none
TA FILENAME1 prot6m # target file name none
WT FILENAME1 full # weight (pseudo) file name none

The application of phase extension uses a cost function that is applied in reciprocal space (see [16]). Note

that a phase extension constraint should always be applied in correction mode. Note too that if your low-

resolution model is only partial, you can make a real weight file, as discussed previously.

6.4 Crystal Symmetry

There is no special input for imposing the crystal symmetry constraint at each step in the optimization

process, other than specification of CON TYPE[c] and RELWT CON[c], where [c] stands for the index of

the crystal symmetry constraint. Our experience is that there is little to be gained from application of this

cost term.

6.5 Choice of Relative Weights

The value of the relative weight represents the weight of the n-th physical-space cost function relative to the

(hkl) space cost function. As stated previously, the proper value of the relative weight can be anywhere in

range 10−3 − 1. In the absence of MIR or MAD, the (hkl) space relative weight is 1. Otherwise, it will be

greater by approximately the number of derivatives. In order to get a handle on the useful relative weight for

a typical physical-space constraint, you should run Solve with the -v option 3 and examine the .cost file.

Assume a single Nhkl cost and a single Np space cost. If from the start, the physical-space cost outweighs

or is comparable with the Nhkl space cost, the relative weight is too large. Our experience is that in the
3In fact, we recommend always running Solve with the -v option
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first outer iteration, the Nhkl term should dominate, while in the 2nd outer iteration (where Solve generally

works hardest), the two spaces should contribute comparable amounts.



Chapter 7

Reciprocal Space Constraints

7.1 Overview

There are currently two forms of reciprocal-space constraints in Eden. One is for singlet and triplet invari-

ants, which may be incorporated in the cost function calculations most effectively. The other is a detwinning

algorithm which may be applied in two modes – either amplitude or intensity detwinning (with input frac-

tion). Currently, these constraints are applicable for a native data set only – i.e., they may not be combined

with MAD or MIR.

7.2 Singlet and Triplet Constraints

Knowledge about singlet and triplet phases is obviously useful to Eden. The singlet reflections are the origin-

determining reflections and the semi-invariants consistent with them. The triplets are triplet invariants. The

knowledge is not applied blindly, since it generally comes with some error allowance. Instead, at each point

in the generation of consistent phases, the singlet and/or triplet invariants is used with its error allowance and

with an input weighting coefficient to give two new costs, which are added into the general cost function.

The singlet invariants come in a file (identified by name sfile in Table 7.1, with no added suffix) and is

expected to contain 5 space-delimited numerical fields:

h k l phase sigma

The triplet invariants come in a file (identified by name tfile in Table 7.1, with no added suffix) and is

expected to contain 11 space-delimited numerical fields:

h1 k1 l1 h2 k2 l2 h3 k3 l3 phase sigma

where
3∑

i=1

hi =
3∑

i=1

ki =
3∑

i=1

li = 0

Eden uses this information as a soft restraint at each step of the cost function minimization algorithm.
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Table 7.1: Singlet and Triplet Invariant Input for Solve

Keyword Example of value description default

NCONSTRAINTS 2 # Number of constraints 0
CON TYPE1 singlet # Description of constraint none
RELWT CON1 1000. # Singlet relative weight 0
TA FILENAME1 sfile # Singlet target file name none
CON TYPE2 triplet # Description of constraint none
RELWT CON2 30. # Triplet relative weight 0
TA FILENAME2 tfile # Triplet target file name none

7.3 Detwinning

When a crystal is merohedrally twinned, there are other programs that can deal with intensity twinning

which may or may not be entirely successful. The possibility of amplitude twinning is not handled in

any conventional crystallographic package, to the best of our knowledge. Therefore, we have introduced a

detwinning package to deal with both sorts of twinned crystal. This should be looked upon as a reciprocal-

space constraint, even though the input follows a different scheme from the usual pattern (target filename,

relative weight, etc.) See Table 7.2.

Table 7.2: Detwinning Input for Solve

Keyword Example of value description default

DETWIN TRUE switch to activate detwinning FALSE
T TYPE I ‘I’ (intensity) or ‘A’ (amplitude) none
T MATRIX 1 0 0 -1 -1 0 0 0 -1 twinning matrix none
T FRAC 0.2 twinning fraction (range: 0 - 0.5) none

• DETWIN. A switch that you may set to TRUE if you believe that the data are twinned to some degree.

Only if DETWIN is TRUE will the following 3 keywords be read.

• T TYPE. A character (A or I) indicating whether the twinning was amplitude or intensity; Eden has

different algorithms for the two cases.

• T MATRIX. The 3-by-3 matrix transforming the reflection index to the index of its twin.

• T FRAC. The fractional extent of twinning.



Chapter 8

Preprocessing Utilities

Up to this point in the manual, there have been many references to the preprocessing utilities that are needed

for setting up Solve runs. We now discuss each preprocessor in detail.

8.1 Apodfc and Apodfo

Apodization is the technical name for changing the crystallographic B-factor in order to smear out the elec-

tron density. This is required so that it may be represented with fidelity in terms of Gaussian blobs on a grid.

The two apodization programs, Apodfo and Apodfc, carry out an analysis of the structure factor data that is

similar to a Wilson plot. They are used for determining the scale factor that places the fobs on an absolute

scale (fscale), as well as smearing factors for the fobs and fcalc (δfo and δfc ). The smearing factors are

used to adjust the resolution of your data to the intrinsic resolution of the Eden solver.

Apodfo reads structure factors from an input fobs file, while Apodfc reads structure factors from an input

fcalc file. Please note that the fobs information should be entered in terms of amplitudes and amplitude

sigmas, NOT intensities and intensity sigmas! Each utility generates a set of data points that are mean

values of ln(‖F‖2) within shells (“bins”) of 1/d2, where F stands for Fobs or Fcalc and

1/d2 = (h2/a2) + (k2/b2) + (l2/c2)

or its general form for non-orthogonal crystals [6]:

1/d2 = ((1− cos2 α)(h2/a2) + (1− cos2 β)(k2/b2) + (1− cos2 γ)(l2/c2)+

2(cosβcosγ − cosα)(kl/bc) + 2(cosγcosα− cosβ)(lh/ca) + 2(cosαcosβ − cosγ)(hk/ab))/

(1− cos2α− cos2β − cos2γ + 2cosαcosβcosγ)

Given an input resolution, each utility then finds the slope of that set of data points, using appropriate

resolution limits and uncertainties (see below). The slope is equivalent to a global crystallographic B factor.

Each one reports that B factor and the y-intercept (y0,obs or y0,calc) of the linearly-fit data, to be used for
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scaling the experimental data. Insofar as the smearing factor is greater than zero, the apodized version of

the input structure factors is written out. In fact, there are 2 resolutions that participate in the apodization:

resolution – the usual variable – is used for either accepting or discarding input structure factors; apod res

is a variable unique to these utilities; it determines how strongly the program will apodize. By default,

apod res = resolution, but you may choose a larger value if you wish to smear the information more

strongly (e.g., for preparing a solvent target).

Apodfc and Apodfo then find the slope of that (very roughly) linear function. They use two methods for

deriving the slope: one is a straightforward least-squares minimization; the other more sophisticated method

uses a “universal” correction factor [3] that suppresses much of the non-linearity specific for globular pro-

teins. The non-linearity comes from their solvent content that decreases the density contrast at low resolution.

If you run Apodfc and Apodfo with the -g flag, graphs using both methods are presented for your inspection

(under Xmgr) and we also print out our recommendation in the terminal report – but you may make your

own choice. If you run them without the -g flag, Eden decides which method to use, based on minimizing

the standard deviation of the linear data with respect to the original data.

Run Apodfc by typing:

eden [-gv] apodfc name sfname

where name.inp is the input parameter file without extension .inp, sfname is a structure factor file name

typed in its entirety,

optional -g (graphics) invokes xmgrace and displays plots of the mean values of ln(‖F‖2) as

a function of 1/d2. There are 4 such plots — the original binned data; the best linear fit to that original

data; data corrected using a universal correction for protein non-linearity; and the linear best fit through the

corrected data. The use of the -g option is highly recommended. However, if you do not have xmgrace

on your system (and thus do not invoke this option), the files that are used for the simple x− y plots will be

written out and are thus available for you to inspect with some other plotting program.

optional -v (verbose) produces a number of extra files that are unlikely to be of interest to the

casual user.

Similarly, run Apodfo by typing:

eden [-gv] apodfo name sfname

where name.inp is the input parameter file without extension .inp, sfname is an fobs file name typed in

its entirety,

Apodfc and Apodfo both expect to find an input parameter file, name.inp, containing run conditions and

parameters, entered as upper- or lower-case keywords (first column) followed by values (second column).

Use a “generic” input file (see Table 3.1) plus optional information from Table 8.1.

Usually, there is no need to use non-default values for BINWIDTH, MAX RES or MIN RES — but see

below.
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Table 8.1: Optional Input for Apodfc and Apodfo

Keyword Example of value description default

BINWIDTH 0.004 # width of intensities shells 0.002 1/Å2

MIN RES 4.0 # minimum resolution 3.5 Å
MAX RES 1.9 # maximum resolution 0.05 Å
APOD RES 6.0 # apodization resolution resolution

(and for Apodfo only)

USESIG FALSE # switch to use fobs SIGMA TRUE

The weighted linear fit is calculated over a subset of 1/d2 space, corresponding to the available extent of

(hkl) in the input (fcalc or fobs) file and limited by the range (min res,max res). Weighting is determined

by the number of reflections in each bin and (for fobs apodization) by their sigma values. If the -g flag is in

effect, the mean values of ln(‖F‖2) within each shell vs. 1/d2 and a linear fit to those values are written

to text files wil and lin wil, respectively, for inspection with the plotting program xmgrace. Adjusted

versions of the two files that correct for the universal shape are also written and displayed as wil w0corr

and lin wil w0corr. We recommend that you study the plots to be sure that the fit is good. If not, for

example if the linearized plot extends to too low values of 1/d2, you may want to enter an adjusted (lower)

value for keyword MIN RES.

After you have chosen the smearing factor, the selected Wilson plot will be written to sfname wil. (While

MAX RES is also available for changing the upper limit of 1/d2, we have seldom found a need to fiddle with

it.) Please note: changes in MIN RES or MAX RES have to do with the limits on the x-axis over which

linearization will be applied. Do not change INPUT RES to be “consistent” with them! — INPUT RES

affects the calculation of δfo or δfc critically. If either apodization utility reports an error: “Trouble! -

empty bin(s) ...”, followed by a list of bin occupancies and values of ||F ||2, you should increase the value of

BINWIDTH judiciously from the nominal value of 0.002 to n ∗ 0.002, where n is an integer.

Normally, the codes will write apodized structure factors to a file whose name is derived from the input

structure factor file, by adding apo before the file extension. However, sometimes Apodfc or Apodfo will

report a negative smearing factor. That means that your data has a lower intrinsic resolution (higher B value)

than the solver can provide. This is not a problem; Apodfo and Apodfc will not write out apodized files. You

should use the input (“unapodized”) files for all further processing.
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8.2 Expandfc and Expandfo

Expandfc and Expandfo expand structure factor files to P1. Solve and Back now quietly expand data to

P1 (which was not the case in earlier versions of Eden). Nevertheless, Expandfc and Expandfo runs may

occasionally have to be a part of the preprocessing of .fcalc and .fobs file in your problem. The reason for

this is that Eden works in the upper half-ellipsoid (h ≥ 0), which is not necessarily the case for the programs

that produced your files.

Consider first Expandfc; run it by typing

eden expandfc name fc filename.ext

where name stands for the parameter file name without extension .inp, containing run conditions and

atomic parameters, entered as upper- or lower-case keywords followed by values (see Table 3.1). There is

generally no special input for Expandfc. However, use the keyword/value pair ANOM TRUE for anomalous

dispersion files, for which Friedel’s relation does not hold. Otherwise, the utility will report very large

numbers of mismatches, which it finds when trying to satisfy that relation and you will lose the anomalous

information.

Similarly, run Expandfo by typing

eden expandfo name fo filename.ext

where name stands for the parameter file name as before (see Table 3.1). You should use the keyword/value

pair ANOM TRUE for anomalous dispersion files, for which Friedel’s relation does not hold.

Although Expandfc and Expandfo require input of only the unique set of reflections, they read all reflections,

expand them, and verify that the expansions are consistent. It sometimes happens that expansion of the

original model does not produce consistent values. For example, we have observed data generated by Phases

from a hexagonal crystal for which the centric reflections at n∗60◦, n )= 3, were off by as much as a degree.

In that case, Eden will report “mismatches”, the first 20 of which will be written to the log. If you run the

Expand utilities with the verbose switch, all the mismatches will be written to the log. Do check these to be

sure that there isn’t some real error in the crystal classification. Regarding the naming of the output of these

programs, consider running Expandfc on fc filename.ext; the output file will be named fc filename P1.ext

for ordinary data; fc filename P1plus.ext for anomalous data from a crystal that is not triclinic; and two

files named fc filename P1plus.ext and fc filename P1minus.ext for anomalous data from a triclinic

crystal.1 Corresponding names apply to the output of Expandfo.

The expansion preprocessors in Eden do a simple expansion of the data in your input files to P1. Whenever

the expression “expanded to P1” appears in this manual, the meaning is the unique points in the h ≥ 0

half-ellipsoid in (h, k, l) space:
1In fact, fc filename P1minus has the complex conjugate of fc filename for the negative h hemi-ellipsoid. Eden Solve uses those

as such.
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0 < h ≤ ∞, −∞ ≤ k ≤ ∞, −∞ ≤ l ≤ ∞,

h = 0, 0 < k ≤ ∞, −∞ ≤ l ≤ ∞,

h = 0, k = 0, 0 ≤ l ≤ ∞

.

Normally, you will not need to expand your fobs and fcalc explicitly; the expansion will be done internally,

in Back and Solve.

8.3 Back

Back estimates electron/voxel data from a set of calculated structure factors, such as a starting phase set. It

obtains a “solution map”: the amplitudes of a set of Gaussian densities of given width,√η ∗ grid spacing,

centered on a simple grid or on a body-centered grid of given grid spacing. The code reads the diffraction

pattern to the appropriate resolution and sets up a physical-space map on a grid at resolution grid spacing,

where grid spacing = 0.6 ∗ resolution for a simple grid and grid spacing = 0.7 ∗ resolution for a

body-centered grid. It varies the number of elements in each grid cell in this map, such that their fast Fourier

transform, multiplied by F (hkl) by exp[−η ∗ π2 ∗ (dr)2 ∗ |h|2] is optimally close to the input diffraction

pattern. Note that Back is not simply a back-FFT of the starting phase set, Such a procedure could produce

negative electron/voxel values, that Eden abhors. Rather, Back (like Solve) applies a conjugate gradient

optimization search to find the set of non-negative electron/voxel values that are the best fit to the input

phase set.

The main purpose of this calculation is to provide a “known” map to serve as its input model to Solve.

Another purpose is to prepare a higly smeared map that will serve as the basis for preparing solvent targets

for Solve. When the solver is run in “completion” mode, Back’s output values will provide initial lower

bounds on the solver .

Run Back by typing

eden [-v] back name

or

eden [-v] back name fc filename

where name stands for the parameter file name without extension .inp, containing run conditions and

atomic parameters, entered as upper- or lower-case keywords followed by values. See Table 8.2 (which is

a subset of the input described in Table 3.2). Using the first form, you should enter the name of the fcalc

file as an entry in the input file (FC FILENAME), Using the second form, that name appears on the execute

line (fc filename). Use of the verbose switch (-v) causes Back to write the value of the cost function at each

iteration into a file named name.cost. This is seldom of interest!
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Table 8.2: Input for Back

Keyword Example of value description default

basic input for all Eden programs (see Table 3.1)

SYMMETRY P3221 # space group name none
CELL 57.2 33.9 68.7 90 90 120# unit cell dims in Ångstrom none

# and angles in degrees none
RESOLUTION 2.0 # resolution in Ångstrom none
RECORD myrecord # file name for a brief report history

other required input for Back (if not on the execute line)

FC FILENAME k.fcalc # calculated struc factor file none

uncommonly used input for Back

DFDX CRIT 0.003 # decrease in gradient to end run 0.001
R STOP 0.03 # R factor to end run 0

Back uses an optimization process that is very similar to that of Solve (see Section 4.2) but without the outer

iteration loop. Like Solve, Back writes a full log and (if the verbose switch is invoked) a listing of the cost

function values. Back no longer writes out a new structure factor file that is consistent with the electron/voxel

file, since such a file is no longer used as input to Solve. If you need such a structure factor file, you should

run Forth on the electron per voxel file that Back writes. The electron/voxel file that Back produces may be

regridded, using the postprocessor Regrid, just like Solve output electron/voxel files. The regridded map file

may then be used to view the starting model.

8.4 Maketar

The principal purpose of Maketar is to prepare solvent targets and weights for Solve runs. Another use is to

prepare stabilizing targets for a partial model. Run Maketar by typing:

eden maketar name modfile

where name is an input parameter file name without extension .inp and the electrons/voxel will be taken

from modfile.bin. For a solvent target, the electrons/voxel file is typically prepared by running Apodfc at a

very low resolution (e.g., 7 Ångstrom). The Apodfc output then serves as the FC FILENAME in a Back run

at the regular resolution, providing electron/voxel files for use by Maketar. Points in the input electron/voxel

files are redefined as “low” and “high” such that the (input) fractionmask fraction are targetted. You may

replace a global mask fraction by another input, threshold, whose value in electrons/cubic Ångstrom

(after suitable conversion to electrons/voxel) designates the level below which voxel values are “low”.



CHAPTER 8. PREPROCESSING UTILITIES 47

The sense of the weight file is determined by the obligatory input, target whose possible values are “low”

or “high”. If “low”, the low voxel values have weights of 1; if “high”, the high voxel values have weights of

1.

Maketar expects to find an input parameter file, name.inp, containing the usual basic parameters plus some

special input parameters. See Table 8.3. Output is written to binary files named weight and target with

the usual .bin extension. The weight files contain 1’s at targetted points, 0’s elsewhere. The target files,

which are useful only for solvent targets, contain target value at all points. In fact, the contents of the target

files at points for which the weight is 0 are irrelevant.

Table 8.3: Input for Maketar

Keyword Example of value description default

basic input for all Eden programs (see Table 3.1)

SYMMETRY P3221 # space group name none
CELL 57.2 33.9 68.7 90 90 120# unit cell dims in Ångstrom none

# and angles in degrees none
RESOLUTION 2.0 # resolution in Ångstrom none

other obligatory input for Maketar

TARGET low # “high” or “low” none

MASK FRACTION 0.4 # fraction of points targetted 0.5

... or

THRESHOLD 0.30 # threshold density, in el/Å3

# for targetting none
optional input for Maketar

RECORD myrecord # file name for a brief report history
TARGET VALUE 0.25 # cutoff in el/Å3 for target 0.34

• TARGET. This is an obligatory input whose value is “low” or “high”. Use “low” for a solvent target

prepared with Apodfc; use “high” for a solvent target prepared with X-PLOR/CNS or for a stabilizing

(protein) target. If target is low, the low points, as determined by the mask fraction or threshold, will

have their weights set to 1. If target is high, the high points, as determined by the mask fraction or

threshold, will have their weights set to 1.

•MASK FRACTION. This specifies the fraction of all points in the electron/voxel input file that should be

targetted and hence defines the level separating low from high points.

• THRESHOLD. This is an alternate way of defining the level separating low from high points. It sets the
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limiting low value in terms of el/Å3.

• TARGET VALUE. This specifies the electron density that will be written into all positions in the “target”

file. For a solvent target, typically you will use the default value of 0.34 electrons/Å3. For a stabilizing

target, this input is superfluous — in fact, the file named “target.bin” may be discarded. Instead, the input

file (modfile) will serve as the target.

Please note that if you change the resolution at which Eden is working, you must rerun both Back (to prepare

the physical-space model) and Maketar.

8.5 Sym

Sym is a utility for manipulating pdb information directly. It is used in Eden for two purposes: (a) reporting

points of crystallographic symmetry in the unit cell; (b) identifying fractional limits in the /pdb file for Regrid

(see Chapter 9).

Run it by typing

eden [-i] sym sname pdbname

where sname stands for the input parameter file name typed without its .inp extension and pdbname stands

for the pdb file name with or without its .pdb extension.

optional -i stands for interactive mode; you will be prompted to enter atomic coordinates from

the terminal and Sym will report to you all points related to your input by crystallographic symmetry. In

interactive mode, pdbname is not needed.

no -i stands for non-interactive (default) mode. In this case, Sym reports the extent of the pdb

information after expansion, in terms of fractional values along the crystallographic axes.

Sym expects to find an input parameter file containing the information described in Table 3.1 Optionally,

you may use keyword OVERLAP with a value dist (only in non-interactive mode) for checking purposes; it

tells Sym to report and eliminate any atom in the pdb file if it overlaps another atom (in another asymmetric

unit within a distance of dist Å. Such atoms are eliminated from all equivalent positions.

Please do check the output of Sym with regard to the atoms found; Eden expects that the ATOM (or HET-

ATM) information is written according to the CCP4 specifications, but we have sometimes encountered

’illegal’ cases. Pdb files are read by Sym, Tohu and Count utilities

The Sym and Tohu logs include Matthews’ coefficient 2, which is defined as vol/mass of the full cell. They

also include the protein volume fraction.

2’The CCP4 Suite’, p.49 - 50.
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Viewing Eden’s Results

9.1 Regrid

Regrid takes as input a set of physical-space files in electrons/voxel that are the result of a Solve (or a Back)

run. It produces an electron density map in units of electrons/cubic Ångstrom on a grid that is N times finer

than the input, where N is a small integer (by default, 2). For the default η, a 2:1 regridded map produces

data on a grid that is ≈ 3 times finer than resolution. This is the usual practice in crystallography. For a

body-centered grid type, the value of N must be even. For non-default values, N is read from the execute

line:

eden regrid name sname [N]

Regrid expects to find an input parameter file name.inp and, the binary file sname.bin. Regrid assembles

a single electron density map from the binary information. It writes an X-PLOR/CNS file sname N.map

in the standard format, ready for viewing in O (after running Mapman [9]). If you use PyMOL, switch the

extension .map to .xplor.

If you display electron densities with XtalView in place of O you should follow an Eden Solve by running

Forth, and then an awk script, awk xplor to xtal, to be found in Appendix B. You should then skip the

Regrid postprocessing entirely.

Regrid uses the usual input parameter file containing run conditions and parameters plus some unique input.

See Table 9.1. The values for X LIMITS, Y LIMITS and Z LIMITS may extend over negative or positive

fractional ranges, depending on the region of visual interest. If you don’t know what the ranges should be

but you have a fairly complete pdb file, Regrid can use it to derive the appropriate ranges.
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Table 9.1: Input for Regrid

Keyword Example of value description default

SYMMETRY P3221 # space group name none
CELL 57.2 33.9 68.7 90 90 120# unit cell dimensions in Å none

# and angles in degrees none
RECORD myrecord # file name for a brief report history
RESOLUTION 2.0 # resolution in Ångstrom none

commonly-used optional input for Regrid

X LIMITS -0.5 0.5 # x limits in fract coords 0 1
Y LIMITS -0.6 0.4 # y limits in fract coords 0 1
Z LIMITS 0 1 # z limits in fract coords 0 1

or
PDB FILENAME mypdb # for deriving [XYZ] LIMITS none

rarely-used optional input for Regrid

HIGHRES TRUE # special high-res processing? FALSE



Chapter 10

Evaluation Utilities

10.1 Overview

In addition to viewing the electron density with O, XtalView or PyMOL, Eden provides some tools for

quantitative evaluation of its results. These tools are complementary to the usual tools for refinement –

i.e.fitting models.

10.2 Count

Count counts the electrons in the environment of each atom in an associated pdb file, using as its source the

result of a Solve run. Count assumes that atoms are spherical and have a Gaussian fall-off in space; it deals

correctly with partitioning electron density among overlapping atoms. This is a useful utility for gauging the

success of a high-resolution Solve run.

The invocation for Count is:

eden count name sname [N]

where name stands for an input parameter file name sname stands for the base name of the binary file to be

counted, and N stands for a regrid factor (2 by default)

Internally, Count applies the Regrid algorithm before counting. Thus, input may also include the “regrid

factor” used in Regrid; however, a value other than the default (2) is unlikely to be useful.

There are 3 special keywords for Count — see Table 10.1: the mandatory PDB FILENAME and BCORR,

and optional LEVELS. PDB FILENAME is self-explanatory. BCORR is a correction to the pdb file B

values, that is normally 0 but may be changed if the fobs file was apodized prior to running Solve. In this

case, use the value reported in the apodfo.log file.

LEVELS sets the fractions of RESOLUTION defining radii for counting. They are the multipliers of radii

corresponding to the (corrected) B values of the atoms.

Count writes an ASCII file, sname N.count, containing most of the pdb file information plus the electron

count around each atom, extended out to 1, 1.5 and 2 radii, by default.
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Table 10.1: Input for Count

Keyword Example of value description default

SYMMETRY P3221 # space group name none
CELL 57.2 33.9 68.7 90 90 120# unit cell dims in Ångstrom none

# and angles in degrees none
RESOLUTION 2.0 # resolution in Ångstrom none
RECORD myrecord # file name for a brief report history
PDB FILENAME abc.pdb # file of atoms to be counted none
BCORR 0 B-value correction none

commonly-used optional input for Count

LEVELS 1.5 2. 2.5 3 levels at which to count 1. 1.5 2.

10.3 Shapes

Shapes determines the local topology at each point in a (regridded) data set. It uses the same input as Regrid

(see Table 9.1). It establishes the topography in terms of one of 10 possible shapes, according to the values

of 1st and 2nd derivatives of the density at a point. See Table 10.2. The indices (0 – 5) may be considered

“normal”; other values are probably unphysical and indicate some problem in shape determination.

Table 10.2: Local Shapes

shape descriptor index

uniform 0
blob 1
snake 2
saddle 3
plate 4
constriction 5
negative saddle 6
negative plate 7
negative snake (tunnel) 8
negative blob (hole) 9
“none of the above” -1
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10.4 Dphase

Dphase calculates the phase differences and the cosines of the phase differences, both weighted by ampli-

tudes, between comparable h = (hkl) structure factors in two fcalc files. It also calculates R factors, in

order to estimate amplitude differences in the two files.

For clarity, we use h in place of h and Nh for the total number of structure factors. Denoting by φh and ψh

the phases for comparable (h, k, l) structure factors in the two files and by Fh the amplitude of (either) one

of them, Dphase reports the average phase difference:

Nh∑

h=1

Fh ∗ |φh − ψh|/
Nh∑

h=1

Fh

and the average cosine of the phase difference:

Nh∑

h=1

Fh ∗ cos(φh − ψh)/
Nh∑

h=1

Fh

together with the number of addends in the summation. The information is reported first for all phases, then

for restricted (centric) phases only. The report is prepared twice — once weighted by the amplitudes of

the first fcalc file and then weighted by the amplitudes of the second. In each case, data are averaged and

reported over shells of equal 1/d2 in (hkl) space. Dphase excludes terms for which the amplitude in either

file is 0 and it excludes the (000) term. The R factors are calculated as in Solve, except that first one and then

the other fcalc file serves as the “data”.

Run Dphase by typing:

eden dphase name sfname1 sfname2

where name stands for an input parameter file name without extension .inp. Input will be taken from two

fcalc files of structure factors, sfname1 and sfname2, with extensions written out in full. Dphase expects the

input parameter file, name.inp, to contain basic parameters as described in Table 3.1. Note that the two

fcalc files should be similarly apodized.

It is our experience that two structure factor files whose overall phase difference is less than 20◦ will have

physical-space counterparts that are indistinguishable when viewed with a crystallographic display program.

A phase difference of 30◦ is just noticeable.

10.5 Distance

Distance compares real-space .bin files, using several measures, as described below. It may be used to

compare up to 8 files at a time, reporting the distances among them in the form of a matrix.

Distance reports the rms fractional distance between pairs of input files:
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√√√√
P∑

p=1

(np − n′p)2 / (
P∑

p=1

(np)2 +
P∑

p=1

(n′p)2)

.

and the absolute linear fractional distance between pairs of input files:

P∑

p=1

|np − n′p| /
P∑

p=1

(np + n′p)/2

.

Distance also reports the correlation coefficient for the data in pairs of files:

r =
∑P

p=1 (np − n)(n′p − n′)
√∑P

p=1 (np − n)2
√∑P

p=1 (n′p − n′)2

10.6 Variance

Variance compares a number,M(≤ 50) of input binary files; it writes three output binary files: average.bin,

containing the average of theM inputs at each voxel:

< np >=
M∑

m=1

np/M

sterror.bin, containing the standard error (square root of the variance) at each voxel:

ste(np) =

√√√√
M∑

m=1

(np− < np >)2/(M − 1)

and erwm.bin, the error-weighted average at each voxel:

erw(np) =< np >2 /(< np > +ste(np))

This is a useful utility to run in conjunction with Perturbhkl: if the solution of a high-resolution fcalc file is

repeatedly perturbed and solved, then finally averaged using Variance, an even better map should result. See

also stab script and doit in Appendix B

Run Variance by typing:

eden variance pname b1 b2 b3 b4 b5 b6 b7 b8

where pname stands for the input parameter file and b1 b2 . . . stand for the names of the binary Solve output

files to be compared.
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Advanced Topics

11.1 Stopping Criteria for Solve Runs

There are a number of reasons why the conjugate gradient solver in Solve will quit. Some of the commoner

ones will now be described. A succeesful Solve run generally ends on one of the following three conditions

(where the numbers are examples only):

• “discrepancy principle satisfied”

• “Stopping - Rfac is less than 0.02”

• “getsol worked, 325 funct calls”

The discrepancy principle is a measure of the inherent accuracy of the fobs measurements (based on the

σ values). Using it helps to prevent the program from overfitting the diffraction data. The Rfac stopping

criterion will be effective only if you have set R STOP, since the default is 0. Setting r stop to a larger value

can also prevent Solve from “churning”; however, if your fobs file has σ values, the discrepancy criterion

generally achieves the same goal in a less arbitrary fashion. The third condition does not always signal

genuine “success”; it is based on the inner workings of the complex conjugate gradient solver [5].

The most commonly encountered reason for the inner iteration loop in Solve to stop (and a new outer iteration

to begin) is:

• “df/dx went down enough”

The value of dfdx crit that triggers this message is governed by keyword DFDX CRIT whose default is

3 ∗ 10−2, It determines the extent to which the conjugate gradient optimizer will persist in the face of a

decreasing gradient of the function being optimized. It is sometimes useful to play with its value in range

10−4 to 10−2. Use it in conjunction with observations of the cost file, which is written when Solve is run in

verbose mode.

The most common overall condition for stopping Solve is:

• “Stopping - standard deviation is not decreasing . . . ”

Unsuccessful Solve runs will typically have one of the following self-explanatory reasons for ending:
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• “Exceeded maximum # of iterations in getsol”

• “Dead in the water - making no progress”

(The maximum number of iterations, MAXIT, is currently 600.)

11.2 Debug Aids

There are several ways in which you can get “inside information” on the way that Solve (or another program)

is working; the main method is to run Solve or Back with the verbose switch:

eden -v solve run22

for example. In this case, Solve will produce a file, run22.cost that lists the cost function each time it is

calculated. If the cost function has components — e.g., in an MIR run, or with physical-space constraints —

each of those components is also listed in that file. There is additional output in the form of outlier reports,

described in Section 4.4, if the verbose switch is set.

If you are concerned about the various (hkl) procedures that determine forbidden reflections and unique

reflections, or if you just want to explore the symmetry operations that are being applied for your space

group, you may turn on a (hidden) “very verbose” switch (with upper-case V):

eden -V solve run22

This will list a lot of details in your log files, including h − k maps by l-slice of various masks. It will also

inform you about memory allocations and deallocations during the running of the program. if you encounter

problems with memory allocation and you are using double precision for all Eden’s activities, you should

consider switching to single precision, using the DOUBLESWITCH in the Makefile.

11.3 Other Utilities

The first thing you may notice if you type eden without arguments is that the general help message lists a

number of programs that have been mentioned only briefly or not at all up to this point. They are mainly

of interest to code developers. Nevertheless, for the record, a brief summary of each of them follows. For

further information, use the help flag:

eden -h program.

• Addmaps adds or subtracts comparable entries in two sets of real-space binary (electron/voxel) files. Note:

files with the .bin extension, NOT with the .map extension! The input files must be compatible (of the

same dimensions). As usual, you need not worry about body-centered cubic file sets as against simple cubic

file sets: the program handles this distinction automatically. Addmaps adds its input maps using coefficients

keyords C1 and C2 that default to 1. You may set keyword C2 to −1 in the input file, in order to subtract

file2 from file1, or you may request any other linear combination of the files.

• Cadhkl (Combines Assorted Data) 1 adds, merges or eliminates comparable entries in two structure factor
1Thanks to CCP4 [2].
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files. Entries are added by default, but only if both files contain them. As in the case of Addmaps (see

above), you may enter coefficients, C1 and C2 for the files. You may set keyword C2 to −1 in the input file,

in order to subtract file2 from file1, or you may request any other linear combination of the files. You may

also merge two structure factor files if there is a keyword MODE whose value is merge. Cadhkl will take

phases from the first file and amplitudes from the second; in this case, the second named file may be either

an fcalc or an fobs file. If the value of MODE is eliminate, Cadhkl writes into the output file amplitudes

and sigmas from the first named file if and only if the (hkl) entry is not in the second named file. Both input

files are expected to be fobs files.

• Forth applies a Fast Fourier Transform to electron/voxel information, converting it to structure factors. The

output of Forth is a file named sname forth.hkl where sname stands for the binary file base name.

•Multmaps multiplies comparable entries in two sets of real-space binary (electron/voxel) files. Note: files

with the .bin extension, NOT with the .map extension! The input files must be compatible (of the same

dimensions). As usual, you need not worry about body-centered cubic file sets as against simple cubic file

sets: the program handles this distinction automatically. This is a convenient way to apply a mask to another

map file.

• Perturbhkl applies a perturbation to both real and imaginary parts of the structure factors of an input fcalc

file. The applied perturbation is identified on the execute line in terms of a fraction (e.g. “0.2” for a 20%

perturbation) and a starting seed for the random number generator. Perturbhkl is a useful tool to use in

conjunction with the Variance utility, to evaluate with high precision the stability of a high-resolution Solve

result. See also stab script in Appendix B.

• Refine enables you to do a “re-refinement” of your Eden solution. If you feel that your final results contain

really reliable phases, you can use the .map file as a basis for fine-tuning your .pdb file. This new module

will optimize positions (x, y, z), B factors and occupancies of all the pdb entries to give an optimal fit to the

electron densities that Eden produced in your map. Our experience with this module is very limited and we

will appreciate any data that you, the users of Eden, can provide regarding its usefulness.

• Tohu reads a pdb file and transforms its data into a structure factor (fcalc) file. It regards atoms as points

(i.e., it does not use atomic structure factors from the literature) but it accepts a B value for each atom. It

makes appropriate use of occupancies and produces structure factors that are on an absolute scale. Tohu may

be regarded as a simple-minded alternative to standard crystallographic programs with the same general

purpose, such as SFALL in CCP4. It is possible to process anomalous data in Tohu if you set keyword

ANOM to TRUE. In that case, Tohu will write out a file of “hydrogen” atoms at the specified positions; further

processing (using Z, f ′, and f ′′) is relegated to Solve.
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General Installation

You should have a directory, EDEN/ with the following subdirectories: source/ containing files with

extensions c, f, h and lib plus a Makefile; help/ containing the files invoked when Eden encounters

errors or requests for help; example1/ containing input for a trivial test problem; and manual/ containing

the PDF version of this manual.

There are several adjustments that you need to make before you can compile and load Eden. They relate both

to the contents of the Makefile and to the FFTW library. First, you may need to re-install FFTW and change

the location of the FFTW include and libraries. Here is the procedure that I have found to be satisfactory:

when you have located and downloaded fftw-2.1.5.tar.gz, unzip it and run

tar -xf fftw-2.1.5.tar

to extract the contents. Prepare an address for your new information (e.g. $HOME/myfft) and then type

make clean

./configure --enable-type-prefix --prefix=‘‘$HOME/myfft’’ --enable-float

make

This will create the single-precision version of fftw, placing libraries in myfft/lib and include files in myfft/include.

Then do the same without –enable-float for the double-precision library:

make clean

./configure --enable-type-prefix --prefix=‘‘$HOME/myfft’’

make

Second, you must decide whether to compile and use Eden in single- precision or double-precision or both.

(Of course, if you do both, you must ”make clean” between compiling in one precision and the other.)

Third, you may wish to change the optimization level in the Makefile. And finally, you may need to change

the location of the executables. There are comments in the Makefile to guide you in all these. Having made

the adjustments, you should be able to compile and load Eden by issuing the commands
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cd $EDENHOME/source

make install

Note that object code is first written into the source/ directory; the word “install” transfers it to the bin/

directory. It is named “deden” or “seden” (for double- and single- versions, respectively) with “eden” being

a simple script that directs you to the most recently installed version. We have encountered the following

apparently harmless warning message on SGI machines while linking the object code:

ld: WARNING 85: definition of main in eden.o

preempts that definition in /usr/lib/libftn.so.

Recent code versions with the Refine package make use of the GSL library; we have encountered the fol-

lowing message – again, apparently harmless, if obscure – when linking this library on our MacOSX:

ld: warning dynamic shared library: /sw/lib/libgslcblas.dylib not

made a weak library in output with MACOSX DEPLOYMENT TARGET

environment variable set to: 10.1

If there are other (real) problems, please contact Hanna Szőke, (phone: 925-422-9248, e-mail: szoke2@llnl.gov).

This manual describes Eden Version 5.2; when you type eden, that version number should appear on your

terminal. If a different version of Eden is reported, you have a mismatch between source code and manual,

and the executable will not always behave as described here.
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Tools

If your computer is not IEEE but has little-endian addressing and you exchange .bin files with users who

work at big-endian computers (or vice-versa), those files must have their floating-point entries byte-swapped

before they may be used as expected. To do this, look for an executable in your bin/ directory fbyteswap

and run it with two arguments — the input file and an output file which should then replace the original.

Once you have done this, you should have no further need for byte swapping.

There are other tools that may make your life easier; here is an example.

awk hkl to xplor:

#

# AWK script to convert .hkl file in fixed (3I4,2F8.2) format to

# an X-PLOR format that EDEN can read. The script will work for

# input files in which fields lack white space separators.

#

# Run it by typing:

# awk -f awk hkl to xplor ¡ [infile] ¿ [outfile]

#

# where [infile] and [outfile] stand for input & output file names.

#

{line=$0;

a=substr(line,1,4);

b=substr(line,5,4);

c=substr(line,9,4);

d=substr(line,13,8);

e=substr(line,21,8);

print “IND ”, a, b, c, “ FOBS ”, d, “ SIG ”, e }
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