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Our understanding of the relationship between the structure of
RNA and its catalytic activity has advanced significantly in the
past year. These advances include time-resolved
crystallographic studies on the hammerhead ribozyme, as well
as new structures of a group I intron, a lead(II)-cleavage
ribozyme, a hepatitis delta virus ribozyme, and components of
the spliceosome machinery and the peptidyl transferase center
of the ribosome and, most significantly, the structure of the
ribosome itself.
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Abbreviations
HDV hepatitis delta virus
snRNA small nuclear RNA
VS varkud satellite

Introduction
The author of a noted text on enzyme kinetics stated in his
preface that “for all the current and rather silly emphasis
on structural biology, understanding enzymes means
understanding catalysis, and catalysis is concerned with
kinetics, not structure: ... studying the photograph of a
racehorse cannot tell you how fast it can run.” [1]

Perhaps this may be true, but recent advances in time-
resolved crystallography have made it possible to collect a
series of ‘photographs’ or, more accurately, data sets
depicting various states along the enzyme’s reaction coor-
dinate. Although X-ray crystallography is not well suited to
telling us how fast an enzyme can run, it has proven its util-
ity by telling us, in structural terms, how an enzyme can
function. Thus, emphasizing structural aspects of enzy-
mology provides a complementary perspective on enzyme
catalysis that many regard as being more useful than silly;
time-resolved crystallography greatly extends the utility of
the technique.

With the discovery that RNA can act as an enzyme, the fun-
damental question of how ribozymes work has impelled
some enzymologists and structural biologists to focus their
attention upon RNA-mediated catalysis. In addition to the
desire to obtain ‘photographs’ of these new enzymes in the
form of new crystal structures of enzyme–substrate or
enzyme–product complexes, protein crystallographers have
developed techniques for conducting time-resolved crystal-
lographic analyses [2,3] of enzyme mechanisms. These

techniques are proving to be of interest to those of us hoping
to understanding how the structure of a ribozyme mediates
its catalysis. Hence a series of ‘photographs’ will hopefully, as
in the case of protein enzyme-based time-resolved crystal-
lography, help us to understand how a ribozyme can run, if
not how fast it can run.

Francis Crick originally speculated that RNA might be
capable of catalysis when he remarked upon the protein-
like structure of tRNA. When the RNA subunit of
ribonuclease P and the L-19 processed group I intron were
shown to be enzymes in vitro, however, everyone else was
rather surprised by the discovery of RNA catalysis.
Subsequent to these discoveries, a number of other cat-
alytic RNAs, including the group II intron and several
small self-cleaving RNAs derived from satellite virus
RNAs (the hammerhead, hairpin and hepatitis delta virus
[HDV] ribozymes) were added to the list, which continues
to grow slowly [4•].

The first crystal structures of a ribozyme appeared a
decade later, in the form of two hammerhead ribozyme
constructs in which the cleavage site base was altered in
order to prevent catalysis [5,6]. These were followed by a
catalytically active form [7]. The structure of an
autonomously folding domain of the group I intron also
appeared [8] within the year. Crystal structures of the
entire catalytic core of the group I intron [9••], as well as
one of two structures of the HDV ribozyme [10••], have
just been reported. An NMR structure of an in vitro select-
ed RNA that cleaves in the presence of Pb(II) is
emerging [11•] and an NMR structure of an RNA compo-
nent of the ribosomal peptidyl transferase center recently
appeared [12•]. The hammerhead ribozyme has been the
subject of time-resolved crystallographic analyses [7,13••]
aimed towards understanding the structural changes that
must take place between the initial state structure and
structures that are capable of forming the required transi-
tion state for the catalyzed cleavage reaction. This review
focuses upon the new NMR spectroscopy and crystallo-
graphic results listed above.

Ribozyme chemistry
The naturally occurring ribozymes all have RNA substrates
[4•]. The group II intron, in addition to catalyzing RNA reac-
tions, also nicks DNA [14•,15]. If the peptidyl transferase
activity of the ribosome is truly RNA catalyzed [16•,17••],
the scope of natural substrates will be widened. In vitro selec-
tion experiments clearly demonstrate that RNA is, in
principle, capable of catalyzing a wider variety of more com-
plex reactions [18], including peptide-bond formation
[19•,20•] and ester transferase activity [21•]. The simplest
chemical reaction catalyzed by RNA, self-cleavage of the
backbone via phosphodiester isomerization, involves
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nucleophilic attack of the 2′ oxygen upon the adjacent phos-
phate. As the bond between the phosphorus and the
5′ oxygen is broken (thus cleaving the phosphodiester back-
bone of the RNA), a 2′,3′-cyclic phosphate is formed. This
reaction, catalyzed at a specific cleavage site by the hammer-
head, hairpin, HDV and varkud satellite (VS) ribozymes, is
the same reaction that causes spontaneous, random base-cat-
alyzed RNA degradation in unstructured RNA. For this
reason (as well as its small size and well-characterized bio-
chemistry), the hammerhead ribozyme was a reasonable first
choice for structure-based mechanistic studies.

The hammerhead RNA cleavage site is highly specific,
the scissile phosphate being more labile by a factor of
approximately 106 compared to the other phosphates in
the ribozyme, most of which adopt approximately helical
conformations. Moreover, the hammerhead ribozyme-cat-
alyzed cleavage reaction, unlike spontaneous background
cleavage, shows a significant thio effect. Substitution of a
phosphate oxygen with sulfur atom sometimes results in
diminished activity. This is known as the thio effect. In
some cases, the activity can be ‘rescued’ with a soft metal
ion such as Cd2+. This is taken as evidence for the phos-
phate being a divalent metal-ion-binding site. This
indicates that the structure of the transition state that is
stabilized by the hammerhead ribozyme must differ in
some fundamental aspect from the structure of the tran-
sition state of the uncatalyzed reaction. The question as
to how the structure of the hammerhead ribozyme medi-
ates the formation of this unique transition-state

geometry is therefore of fundamental interest, especially
in light of the structure of the ‘initial state’ of the ham-
merhead ribozyme.

Our understanding of the involvement of divalent metal
ions in ribozyme catalysis has been challenged recently by
some startling new results. Three groups [22•–24•] have
now shown that [Co(III)(NH3)6]3+ can substitute for
[Mg(H2O)6]2+ in the hairpin ribozyme, indicating that
divalent metal ions are not active participants in the cleav-
age chemistry of the hairpin ribozyme. Subsequent
analyses of the hairpin, hammerhead, neurospora VS and
HDV ribozymes reveal that with high concentrations of
monovalent cations (such as Li+ or even NH4

+), metal ions
are expendable in every case except the HDV
ribozyme [25••]. The initial hairpin ribozyme results are
thus more generalized than was previously believed; at
least three of the ribozymes are not, strictly speaking, met-
alloenzymes. Tb(III) has also been shown to be a potent
inhibitor of the hammerhead ribozyme and is seen to bind
to G5, as well as other significant metal-binding sites in the
crystal structure [26•].

Ribozyme structure
As mentioned, the first ribozyme structures to be solved
were those of the hammerhead ribozyme, including an
unmodified, cleavage-active form. These structures
revealed the ribozyme to be composed of three A-form
helices, one of which (stem II) is extended by noncanoni-
cal, (mostly) conserved base pairs and stacks upon another
helix (stem III). The remaining helix (stem I) is connect-
ed through the cleavage site base, as well as through a
conserved uridine turn, into which this base is positioned
(Figure 1). The conformation of the cleavage site base
itself is intriguing. Despite being sequestered from the
rest of the RNA by being positioned within the pocket
formed by the uridine turn, the scissile phosphate is found
to be in an approximately helical conformation and is
therefore not amenable to the known in-line attack mech-
anism. The requirement for a conformational change in
order to activate the scissile phosphate is therefore univer-
sally acknowledged [4•,5–7,13••,27,28•,29], but the
magnitude and extent of such a change has been the focus
of debate. A local conformational change, in which the
cleavage site base either ‘flips out’ (as in the case of ran-
dom coil RNA) or moves within the confines of the uridine
turn in order to align the scissile phosphate, was proposed
based on the original crystal structure [5]. More global
rearrangements, whereby the RNA undergoes a transition
from an ‘open’ structure (that observed in the crystal) to a
‘closed’ catalytically relevant structure [30•], mediated by
both additional conserved base interactions and possibly
additional metal–phosphate interactions [31•], have also
been proposed. 

In addition to the hammerhead ribozyme structures, other
catalytic RNA structures have just appeared. The structure
of an autonomously folding domain from the group I

Figure 1

The 3 Å resolution crystal structure of an uncleaved, unmodified and,
therefore, catalytically active hammerhead ribozyme [7]. The cleavage
site base is positioned within the catalytic pocket, as indicated. The
substrate strand is the dark shade and the enzyme strand is lighter.
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intron, the P456 domain, has been solved and reveals a
large array of new RNA structural motifs. How this struc-
ture facilitates metal binding is the subject of more recent
work [32•]. A 5 Å resolution image of the intact catalytic
core of the group I intron represents the next major
advance in our understanding of group I intron structure
and catalysis. The resolution of this structure is somewhat
higher than that used originally to elucidate the structure
of the nucleosome in which the phosphate backbone of the
DNA was visualized. The map indicates that the helices of
the group I intron are disposed in a way that approximates
a predicted structure based on phylogenetic considerations
[9••,33•]. Crystal structures of the HDV ribozyme ([10••];

J Wedekind, personal communication) and an NMR-
derived structure of an in vitro selected Pb(II)-based
ribozyme [11•] are now appearing and will shed much
needed light upon the problem of ribozyme-mediated
RNA catalysis and how it relates to RNA structure. 

The group I intron structure reveals a compact catalytic
core that is reminiscent of protein enzymes, as does the
published HDV ribozyme structure (the cleavage site
product). The low resolution of the group I intron struc-
ture and the lack of uncleaved substrate (or analog) in the
published HDV structure leave the details of the interac-
tions required for chemical catalysis to be elucidated by
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Four panels depicting the various conformational states of the
hammerhead ribozyme catalytic pocket. Panel (a) is a close-up of the
initial state structure shown in Figure 1. Panel (b) shows the ‘early’
conformational change in the cleavage site base and scissile
phosphate captured by freeze trapping the RNA under cleavage active

conditions [7]. Panel (c) depicts the further conformational change
captured using both freeze trapping and a modified RNA [13••].
Panel (d) shows a hypothetical structure of the hammerhead RNA just
after cleavage, before further relaxation and conformational changes
take place.



future experiments. The unpublished HDV ribozyme
structure is of a complex with an uncleaved substrate ana-
log and will provide crucial additional information
regarding active site interactions when it appears.
Similarly, improved group I intron crystals of the catalytic
core, as well as in complex both with substrate and with
the protein required for efficient catalysis in vivo, consti-
tute worthy goals of future research. Nevertheless, these
current structures constitute tremendous advances in our
understanding of ribozyme structure and function. In con-
trast, the Pb(II)-based ribozyme NMR structure reveals
that this most simple of ribozymes is not as preorganized to
form a catalytic center as the larger and more structurally
sophisticated ribozymes.

Time-resolved ribozyme crystallography
Protein enzyme crystallographers over the past decade
have developed the techniques of time-resolved crystal-
lography to the point where they can be used to obtain
structure-based mechanistic information regarding
enzyme catalysis. There are several requirements for suc-
cessful time-resolved crystallography experiments:
crystals of an enzyme that permit catalytic turnover of
substrate to take place; a method for synchronizing the
initiation of the reaction throughout the crystal lattice; the
accumulation of a conformational or chemical intermedi-
ate throughout the crystal lattice to high occupancy; and a
method for either rapidly collecting data [2] or physically
trapping the intermediate in the crystal [3]. 

The hammerhead ribozyme, as the first of the RNA
enzymes to be crystallized, became the first ribozyme to be
studied using the techniques of time-resolved crystallogra-
phy. In this case, active substrate was already bound to the
enzyme, so a single catalytic turnover could, in principle,
be followed once the reaction was initiated by introducing
divalent cations into the crystal while elevating the pH [7].
As the reaction rate is slow compared to that of most pro-
tein enzymes (about 0.4 turnovers per minute), initiation
by soaking crystals was possible [34,35], as was monochro-
matic X-ray data collection using combination freeze
trapping of conformational intermediates. The experi-
ments were therefore simple and straightforward when
compared to many protein enzyme time-resolved studies
and allowed the collection of a series of ‘photographs’ or
structural data sets corresponding to various points along
the reaction coordinate (Figure 2).

Using both an unmodified hammerhead ribozyme
sequence [7] and a sequence in which an additional methyl
group was appended to the 5′ carbon of the leaving group
ribose [13••], several observations relevant to hammerhead
ribozyme catalysis were made: 

1. Complete cleavage of the unmodified substrate RNA
occurs at a rate (about 0.4 turnovers per minute) that is sig-
nificantly enhanced relative to the cleavage rate of the same
RNA sequence under the same conditions, but in solution.

2. A significant movement of the scissile phosphate in the
unmodified RNA occurs prior to cleavage.

3. There is a further rearrangement of the cleavage site
nucleotide. The cleavage site base becomes repositioned
in the catalytic pocket in such a way that the ribose 2′ oxy-
gen swings outwards and moves into a position relative to
the scissile phosphate that makes the future formation of
an in-line transition state possible. This conformational
change was observed [13••] using the modified leaving
group in order to create a so-called ‘kinetic bottleneck’ in
the reaction pathway, enabling the accumulation and
observation of what would normally most probably be a
transient conformational intermediate. This is an
approach used with success in protein time-resolved crys-
tallographic experiments [36] (see Figure 2).

Unresolved problems
Although the hammerhead ribozyme is perhaps the sim-
plest and best characterized ribozyme, making it
particularly amenable to biophysical studies, its simplici-
ty appears to render the molecule so fragile as to defy
analysis using conventional mutagenesis. Due to the
highly conserved nature of the 15 nucleotides in the cat-
alytic core, changing an entire base will often destroy
ribozyme activity to the point at which interpretation
becomes problematic [37•]. Instead, a number of mini-
mally changed artificial bases were incorporated at
conserved positions within the catalytic core, revealing
that several functional groups that do not appear to be
involved in structural interactions are nevertheless crucial
for ribozyme activity. In particular, the nucleotides cyto-
sine, guanine and, to a lesser extent, adenine, within the
uridine turn are quite sensitive to single functional group
modifications whose deleterious effects are not readily
explained by either the initial state structures or the two
conformationally changed structures [27,28•,38•]. Since
these modifications do not disrupt the initial state hydro-
gen-bonding network or the Km of the ribozyme, it has
been suggested that these bases make additional contacts
in the structural rearrangement that is required for forma-
tion of the transition state. The demarcation between
ground state and transition state effects [39] is not always
a clear one, however, complicating the interpretation of
such changes [40,41]. In addition, the binding of a metal
ion to a phosphate located approximately 20 Å from the
scissile phosphate appears to influence metal binding to
the scissile phosphate [31•]. As a result of these observa-
tions, more global rearrangements than those observed in
the crystal have been proposed to explain the discrepan-
cies. Given the fact that the crystal lattice slightly
enhances the rate of hammerhead ribozyme cleavage
[13••] and that more complete cleavage occurs in the
crystal than in solution under otherwise identical condi-
tions, the two sets of results are hard to reconcile. In this
light, a significant conformational change observed in the
NMR structure of the cleaved hammerhead ribozyme is
particularly intriguing [42•].
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Splicing and peptidyl transfer
In addition to the NMR structure of the Pb(II)-based
ribozyme, and crystal structures of the HDV ribozyme and
group I intron catalytic core noted above, progress on many
of the remaining ribozymes is taking place. The most
exciting developments in the field, however, are those per-
taining to the structure and the catalysis that is mediated
by two macromolecular complexes of fundamental impor-
tance — the spliceosome and the ribosome. The
architectural principles of spliceosome assembly have
been revealed by the new structure determination of the
spliceosomal U2A′–U2B′′ RNA ternary complex with a
small nuclear (sn) RNA fragment of U2 [43••], in which
both protein–protein and protein–RNA interactions are
revealed. (Figure 3). As U2 snRNA is involved in the ini-
tial stages of pre-mRNA catalysis, the structure of this
complex represents an important initial step towards
understanding a catalytic RNA reaction of fundamental
importance in eukaryotic organisms.

Perhaps the most fundamentally important problem in
structural biology is that of the ribosome structure. In addi-
tion to being a formidable asymmetric macromolecular
complex whose structural solution represents a tremen-
dous technical challenge, our understanding of the
molecular details of template-directed protein synthesis
will be greatly enhanced by moderate to high resolution
structures of the ribosome. One of the first steps in this
direction was determining the solution structure of an
RNA fragment corresponding to the 23S RNA component
of the ribosomal peptidyl transferase center [12•]. Also,
much progress has been made in recent years with deter-
mining low resolution ribosome structures using electron
microscopy [44••]. Although crystals of various ribosomes
and ribosomal subunits have existed for many years,
important breakthroughs have just occurred using crystals
of the 50S subunit [45••] and the 70S subunit (HF Noller,
personal communication). Using electron microscopy-
derived low resolution structures of these particles, two
groups have, for the first time, generated phases that are
accurate enough to enable the location of heavy-atom
derivatives and to allow more detailed features of the ribo-
somes, including density possibly corresponding to
ribosomal RNA, to be visualized. The success of this
approach, where others have long failed, is perhaps the
most significant event in structural biology in several years
and its importance cannot be overestimated.

Conclusions
As our understanding of the structural basis of hammerhead
ribozyme catalysis matures and the difficulties in correlating
the structural results with some of the more enigmatic bio-
chemical findings are overcome, our perception of one of
the simplest catalytic RNAs will come into sharper focus.
Now that the structures of other more complex and inter-
esting ribozymes are emerging, generalities with respect to
RNA structure, function and catalysis will hopefully be dis-
cerned. The field of structural RNA enzymology thus has a

most interesting future, wherein the ultimate goals will be
understanding two of the most fundamental RNA-mediated
catalytic activities — messenger RNA splicing and polypep-
tide synthesis. The prospect of a high resolution structure of
part or all of the ribosome is particularly encouraging and is
possibly the most important current undertaking in struc-
tural biology. Clearly then, both crystallographic
‘photographs’ of RNA structures, as well as series of ‘pho-
tographs’ from which a ‘motion picture’ of RNA catalysis
can be derived, are of paramount importance to our current
understanding of ribozyme structure and catalysis.
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